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ABSTRACT

This dissertation develops a mixed integer linear program to establish the upper and
lower bounds of the Alphorn of Uncertainty. For a project manager, planning for uncertainty is
a staple of their jobs and education. But the uncertainty associated with a catastrophic event
presents difficulties not easily controlled with traditional methods of risk management. This
dissertation brings and modifies the concept of a project schedule as a bounded “Alphorn of
Uncertainty” to the problem of how to reduce the risk of a catastrophic event wreaking havoc
on a project and, by extension, the company participating in that project. The dissertation
presents new mathematical models underpinning the methods proposed to reduce risk as well
as simulations to demonstrate the accuracy of those models. The dissertation further assesses
the complexity of the models and thus their practical application. Finally, the dissertation
presents strategies to reduce the risk to a project of a catastrophic event using the upper

bound of the Alphorn as the measure of risk.
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1. INTRODUCTION

This dissertation advances the research of risk-planning for projects by presenting the
first mixed integer linear program (MILP) to establish the maximum and minimum bounds of
the “Alphorn of Uncertainty” (AoU) as first described by Elmaghraby and Zhang (2011). The
MILP can be solved in a reasonable amount of time for large problems, computing a 98 node
network with complexity of 2.1 in an average time of seventy-five seconds. Further, the MILP is
used to demonstrate the effectiveness of using a rail schedule vs. a roadrunner schedule thus
giving a project manager tools to significantly reduce the risk of a project at risk of a
catastrophic event or events. For project managers, planning for uncertainty is a staple of their
jobs and education (Jacobs, 2010; Pinedo, 2012). But the uncertainty associated with a
catastrophic event presents difficulties not easily controlled with traditional methods of risk
management (Hallgren & Wilson, 2008). The bounds established by the MILP developed here
show a project manager the maximum and minimum costs associated with each point in time
during project execution giving him or her insights not previously available. Finally, the MILP is
more efficient (with certain caveats) than either a simulation or the methods presented in the
literature to date for developing these bounds.

A situation known by the author presents a compelling example of the need for analysis
of and measures to protect against a catastrophic event. A developer of light industrial
machinery (COMPANY) was selected to manage an entire project to develop a group of light
factories for a manufacturing park in a depressed area of a developing nation. This project
included equipment produced by COMPANY and a significant amount of equipment, buildings,
infrastructure, and management technology the provision of which was to be provided by
COMPANY. The government overseeing and paying for this project provided limited legal
protection for commerce in the area of development, was not subject to democratic constraints,
and was otherwise unstable but firmly in control of the country at the time of the project.
Further, the area being developed was adjacent to a low level, but brutal, insurgence and

violence had crossed into this area resulting in the deaths of associates of COMPANY.
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The risks to COMPANY included:

(1) the loss of government payment due to overthrow or change in temperament of the
existing government;

(2) Terrorist activity destroying significant parts—or all--of the project before completion
and payment;

(3) The Kkilling of key personnel in country making completion of the project impossible;
and

(4) The impossibility of acquiring insurance against any of the above risks.

These risks are difficult to quantify using standard probabilities and even if they are,
the probability of any event or combination of events would be so small as to render normal
methods of limited value. The company would have benefited from an understanding of the
maximum financial risk at each point of the project and a plan to minimize that risk. Using the
AoU would have added meaningful insight to the risk profile of this project by establishing the
maximum cost possibly incurred at any point in the project.

We will introduce a second, smaller application to another real-life example later in the
paper.

The dissertation is comprised of seven parts. After this introduction the second section
is a literature review and the third section is a review of the AoU and a presentation of a new
mathematical approach to solving the bounds of that AoU. The fourth section is a simulation to
support the accuracy of the models and confirm the validity of the new model. The fifth section
is an examination of two broad methods for modifying and using the mathematical approach to
reduce catastrophic risk. The sixth section is an evaluation of the methods discussed in section
four to compare the risk profiles of different projects and the seventh section is a summary of

the work including areas of future study.
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2. LITERATURE REVIEW

Managing projects under uncertainty has a long pedigree in research. Much work has
been done on disruptions that do not force the cancelation of a project. Klastorin and Mitchell
(2013) discuss delays of a project where overhead, indirect costs and penalties continue to
mount, and the delay analyzed is singular and of unknown duration. Their method of
addressing the delay is to compress the duration of activities only after the project has started
or until after the delay occurs. Likewise, Hallgren and Wilson (2008) discuss a guerrilla attack
that does not result in the cancelation of the project. Further, although the catastrophes used
in this dissertation resemble those presented by the “force majeure” risks discussed in
Sanchez-Cazorla et al. (2017), those risks do not result in the cancelation of the projects.

Activity failure, where the failure of an activity results in the failure of the project as a
whole, has been well studied. Catastrophic failure was first studied by De Reyck and Leus
(2008) in the context of R&D projects and has since been extended to consider modular
projects (Coolen et al. , 2014, Huysmans et al. , 2015), choices regarding alternative-
technologies (Ranjbar , 2013, Ranjbar and Davari, 2013, Creemers et al. , 2015), and make-or-
buy decisions (Zhao and Chen, 2010). An unusual type of disruption occurs when an outside
entity actively attempts to end the project after it discovers the project and determines it is a
threat. Pinker et al. (2013) modeled the response to this risk to minimize exposer time—the
time between when an adversary detects the project and when the project is scheduled to be
completed. Pinker et al. (2014) further developed understanding the complexity of minimizing
exposed time. Gutin et al. (2015) considered the type of adversary who can delay project
activities, whereas Hermans et al. (2019) model intelligence gathering for an adversary trying to
detect a project, consider it a zero-sum game. None of these risks from a rival necessarily
result in the cancelation of the projects.

Disruption of a project can occur from within the project—endogenous—or from
outside the project—exogenous. A further third type of disruption occurs when a mix of

endogenous and exogenous forces combine to threaten the project such as those situations
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discussed by Pinker et al. (2013, 2014). Here, the goals of crashing the project to finish as
quickly as possible and the goal of preventing disruption to the project form an outside source
which may require lengthening the project can come into conflict. The tools presented here can
be used to account for stoppage attributed to either type of disruption, but the examples used
are exogenous.

The tool used to measure a project and asses its vulnerability to failure due to a
catastrophic event is the AoU first presented by Zhang and Elmaghraby (2014). The AoU for a
project is the maximum and minimum costs (negative costs can represent cash inflows) of a
project at all times possible during project execution. This creates an upper bound (U.B.) and a
lower bound (L.B.) on the cost of the project at each time period. Although Elmaghraby
theorizes the complexity of developing the U.B. and L.B. we present models to develop these
bounds using a MILP. MILPs have a long history of use in project management (Szmerekovsky,
J. G., & Venkateshan, P., 2012; Blazewicz ]J., Dror, M., & Iglarz, J., 1991).

Two types of scheduling are presented here: roadrunner scheduling and rail (or railroad)
scheduling. Zhang and Elmaghraby (2014) present only a roadrunner start schedule and we
introduce the rail schedule as a method of reducing risk from a catastrophic event. Rail
scheduling was introduced by Herroelen and Leus (2004). This can limit the risk of non-
catastrophic delay in scheduling but can increase the total duration of the project. As we will
show, using a rail start schedule to protect against catastrophic event failure has the same
results. Rail starts have also been used with priority lists or resource flow networks by Tian
and Demuelemeester (2013), critical chain and buffer management methodology by Goldratt
(1997), and project monitoring by Martens and Vanhoucke (2017).

After the U.B. and L.B. are presented the U.B. is subjected to an NPV review. NPV has a
long history in project management (Sung, C. S., & Lim, S. K., 1994). This approach is also used
to compare different AoUs using the same roadrunner start schedule. A recent review of
project scheduling with the NPV objective is provided by Wiesemann and Kuhn (2015) who
argue that uncertainty should be accounted for explicitly and explain complexities involved in
doing so._In the mirror image of the goals of our work, Zheng et al. (2018) study a resource

4
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constrained project scheduling problem where the objective is to maximize NPV given random
activity durations.
Thus, this dissertation combines two major themes of project management, the NPV of

outgoing cash flows in projects and project disruption using a relatively new tool in the AoU.
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3. THE AOU

Introduced by Elmaghraby and Zhang (2011) the AoU represents the possible costs
associated with a project and consists of an U.B. and a L.B. that are monotone, non-decreasing.
These bounds will represent the “best” and “worst” case scenarios for any point of time during
the project. An example from nature is the forecast of the possible paths a hurricane might
take as it approaches shore: the further out from shore—the beginning of the AoU—the wider
the mouth of the AoU is as it predicts where the storm will make landfall. The authors
recognized that this approach has been used extensively to plan for duration of projects but
add the insight that if durations of activities are random variables, costs and payments are also
random variables. This should be of great interest to project managers attempting to measure
the desirability of any given project. For the work of this paper, only costs are considered.

The principle addition made Elmaghraby and Zhang (2011), in addition to furthering the
attention on cost, is the use of random variables—based on Monte Carlo Simulation (MCS)—to
represent duration, cost, and income. Further, Elmaghraby and Zhang (2011) uses two modes
of income: “...one that is based on a schedule of payments realized over time, and another that
is based on the realization of certain milestone events”. Elmaghraby and Zhang (2011)
postulates that the mathematical computations needed to determine the AoU are very difficult
to compute and notes two “intractable” issues: first, which activities contribute to the
cumulative costs and, second, how to estimate the costs of those activities. Because of the
intractability noted, Elmaghraby and Zhang (2011) proposes a Monte Carlo Simulation (MCS) to
mitigate these problems.

While an MCS is a legitimate method for obtaining the U.B. and L.B—and indeed is used
to support the accuracy of the LP introduced here—Elmaghraby and Zhang (2011) overstates
the complexity of developing a sufficient mathematical model to establish the U.B. and L.B. of
the AoU. Although they rely on an MCS, they also develop a convolutional integral with
complex “regions” described by different density functions. The complexity of developing a

model to show the range of outcomes for any given t (the reason Elmaghraby and Zhang
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(2011)’s computations are so complicated) is unnecessary since all we are interested in are the
two bounds. The full distribution is not relevant.
3.1. Mathematical Programming to Determine the AoU

Mathematical programming formulations for solving scheduling problems have a long
history (Blazewicz, Dror, & Iglarz, 1991; Klemmt, Horn, ligert, & Wolter, 2009; Pinedo, 2012).
Since, “Many scheduling problems can be formulated as integer programs” (Pinedo, 2012), it is
reasonable to expect that the bounds of the AoU problem can also be solved using integer
programming.

For the AoU, the U.B. and L.B. are established by using two linear programs to develop a
model that can provide these bounds at any given time during the project. This research
demonstrates that the bounds have successfully been established in spite of the difficulties
discussed by Elmaghraby (2011). Further, Elmaghraby and Zhang (2011)’s calculations result in
amodel, “...that the MCS cumulative distribution is sometimes smaller than the theoretical
value but mostly exceeds it” (2011) (italic added). The model developed here shows that the
MILPs’ solutions either equal or exceed the results of the MCS as would be expected of a robust
model. For the model of Elmaghraby and Zhang (2011) the differences between the calculations
and the MCS are small whereas the difference between the solutions of the MILPs developed
here and the MCS are meaningful.

3.1.1. Notation

There are N activities with a set of precedence constraints (i, j) € E. Each activity j takes
a random time to complete on the interval [a, b,] and incurs a cost of ¢; per unit of time
assuming a roadrunner start schedule is used (each activity must start as soon as its last
predecessor finishes). Alternate start scheduling possibilities are discussed in section 4. We
wish to find the maximum and minimum cost (the U.B. and L.B, respectively) that may accrue by
time T. The likelihood and timing of disruption to the project is independent of the project

schedule. If disruption indeed happens, the project is completely cancelled.
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3.2. Upper Bound of the AoU
For the U.B. of the AoU with regular time-cost tradeoffs, the notation for the MILP is as
follows:
M, = Undisrupted project completion time when dj=bj Vj
M, = A sufficiently large number (ex. the maximum cost that can be incurred by the project,
;b))
3.2.1. Variables
d, = duration of activity j
s, = start time of activity j
X, = 1 if activity j starts by time T, O otherwise,
Y, = 1 if activity j finishes by time T, O otherwise,
Z,= total cost accrued from activity j by time T.
F,=1if iis a predecessor of jand j starts immediately after i finishes.
I, = Predefined start time for j if rail scheduling is used as discussed below.
Fj‘ =1 if I, is the start time of j, O otherwise.

3.2.2. Objective Function

Max Y7, z (1)
3.2.3. Constraints

S;<T+M((1-X) vj=1,...,N (2)
$2T-MX, Vj=1,...,N (3)
$+d;<T+M(1-Y;) vj=1,...,N (4)
Si+d;>T-MY;vj=1,...,N (5)
Zi<q(T-s)+M(1-X;+Y;) Vj=1,...,N (6)
Zi<qdi+M(1-Y;) vj=1,...,N (7)
Z;<M)X; vj=1,...,N (8)
s;>2s+d V(i,j) EE 9)

8
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ZFij +Ff =1 vj=1,...,N (10)

(i,j)eE
si<si+di+Mi(1-F;) (1, )€E (11)
$;2s8+di—M((1-F;) (, ) eE (12)
s;<+M0-F) vj=1,...,N (13)
$2L-M(1-F) vj=1,...,N (14)
$1=0 (15)
a<d;<hb; vj=1,...,N (16)
Xi,Y,Fy,Fpef0,1} vj=1,...,N.(i, ) € E (17)

3.2.4. Explanation

To determine U.B. for the project at time T it is necessary to determine which activities
have started (X)) at time T. If j has started, the total cost for the duration of j completed before
T (Z) is added to the objective function (1). This cost is the lesser of the partial cost for j, ¢; *
(T - s;), and the total cost for j, (c; * d)). Inequalities (2) and (3) ensure that j starts by time T if
its starting time does not exceed T. Inequalities (4) and (5) ensure the same for finish times of
activities and variable Y, Inequalities (6), (7), and (8) ensure that activity j contributes to the
total cost at T only if it has started by T. Further they ensure that the cost contributed to T by j
does not exceed its cost for duration d; at T. Constraint (9) ensures that the precedent
requirements of the network are enforced. Constraints (9) through (14) ensure that the
roadrunner start schedule is used and constraint (15) sets the start time of activity 1 to 0.
Equation (16) sets the duration of j between the lower (a;) and upper (b)) duration bounds from
which the MILP is allowed to choose. Equation (17) makes the appropriate variables binary.

3.3. Lower Bound of the AoU

For the lower bound (L.B.) of the AoU with regular time-cost tradeoffs, the linear
program notation is as follows:
3.3.1. Objective Function

Min Y7, z (18)
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3.3.2. Constraints

Zj>cj(T—sj)-M2(1 -Xj+Yj)Vj=1,...,N (19)
Zj>cjdj-M2(1-Yj) vj=1,...,N (20)
Zj>-M2Xj vj=1,...,N 1)
s;>s,+d; v(i,j) €E (22)

3.3.3. Explanation

To determine the L.B. of the AoU the MIN objective function should delay the start of all
activities as late as possible. Like the MAX LP the MIN LP must determine when activates have
started (s;) and how much each activity has contributed to the total cost (Z). Inequalities 19, 20
and 21 ensure that the MILP will assess costs appropriately by making sure the contribution of
j equals the cost corresponding to its duration. Further, they ensure that it contributes only if
it has started by time T. All other constraints serve the same function as they do in the MILP
for the U.B. Inequality 22 forces every activity to start after its predecessor finishes.

3.4. Project Generation

Unless otherwise indicated, all problem instances were generated based on the following
scheme. All projects are represented by an activity-on-node (AON) network N with n activities
as described by Kolosch (1996) using ProGen. We generated networks of n=20, n=50, n=98 with
network densities of 1.5, 1.8, and 2.1. Network density is defined as the ratio of the number of
arcs in a project network to the total number of arcs possible where potential connections =
n*(n-1)/2. Thus Network Density = Actual Connections/Potential Connections (Szmerekovsky,
2012). The density values are between 15% and 25% for n=20, 10% and 11% for n=50, and 3%
and 4% for n=98. Network complexity is measured as the average number of non-redundant
arcs per node including the dummy activities. The number of arcs actually incorporated into
the network ActArcs is controlled by €y, the network complexity deviation tolerance defined
by (Kolisch, 1995) :

J = the number of non-dummy activities in the project

Exer = Network complexity deviation tolerance

10
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ActArcs € [J* NC * (1- €xer)

J*NC* (1- €um)]

All random numbers for minimum (maximum) duration d™ (d™) were generated using

the Mersenne Twister pseudorandom number generator on which Microsoft Excel’s RAND

function is based (Mélard, 2014) where 1 <d™" < 10 and d™" < d™ < d™" +10. The durations for

the AON—and thus s; and f—are established by the MILP where d™" < d,; < d™*. Activity costs

per unit time are uniform [1,5].

Each activity has predecessor set p, where 0 < i < n resulting in Network N.

3.5. Calculating the AoU - Solution Times

U.B.s and L.B.s were calculated for all integer times using CPLEX 12.7 and a 3.6GHz

processor with 16 GB of RAM. The programs were written in IBM ILOG CPLEX Optimization

Studio version 12.8.0.0. The results for the U.B. are in Table 1 and the results for the L.B. are in

Table 2. All times are for projects using a roadrunner schedule and are in seconds.

Table 1. Solution times for U. B. (seconds)

Nodes Complexity

1.5 1.8 2.1

Min 3.94 2.93 2.48

20 Max 5.79 6.10 7.28
Average 5.54 4.54 4.16

stdev 0.98 0.94 0.98
Min 9.89 8.19 11.61
50 Max 16.95 15.45 19.08
Average 13.56 12.15 14.64

stdev 2.18 2.15 2.47
Min 52.62 65.82 67.22
98 Max 60.16 73.46 75.16
Average 56.31 69.58 71.39

stdev 2.58 2.57 2.57

11
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Table 2. Solution times for L.B. (seconds)

Nodes Complexity
1.5 1.8 2.1

Min 3.73 2.62 2.79

20 Max 6.08 5.81 7.06
Average 5.32 4.28 4.42

stdev 0.99 0.93 0.99

Min 11.59 10.09 6.09

50 Max 18.45 16.75 21.48
Average 14.97 13.73 12.45

stdev 2.24 2.04 4.37

Min 39.62 52.22 55.02

98 Max 46.96 61.46 61.21
Average 43.34 56.54 58.35

stdev 2.65 2.85 2.08

3.6. Results

Figure 1 shows the AoU for an example where n=98 and complexity is 2.1.
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Figure 1. Upper and L.B.s for an AoU
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4. SIMULATION VS. LP
The simulation was designed in Microsoft Excel using VBA programming. The
appropriate screen shots and VBA code are included in Appendix B. Figure 2 shows a
representative example of an AoU simulation compared to the MILP shown in Figure 1. For
every T the MILP exceeds the simulation as would be required of a properly constructed MILP.

Figure 3 shows the percentage variation of the U.B. for each T of this same AoU.
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Figure 2. AoU ILP vs Simulation
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Figure 3. % ILP Exceeds Simulation Based on 1000 Runs.

Since each AoU has a distinct shape and duration getting an “average” difference
between the LP and the simulation is problematic. Shown below is comparison of ten AoUs
depicting the maximum, minimum, and average % difference between the LP and simulation for
every t of that AoU. There is a wide variation across and within projects. The average

difference between the simulations and the ILPs for each time t for the U.B.s of 10 AoUs shown

in Figure 5 below is 28%.
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Figure 4. % Difference Between LP and Simulation

The fact that the MILP exceeds the simulation by a significant extent is verified across a
selection of projects at 25%, 50%, 75% and 100% of completion (Table 3).
Over many AoUs the difference between the ILP and the simulation remains considerable.
There is only a very modest increase in accuracy gained by increasing the runs of the
simulation. Increasing the number of simulations runs to 100,000 only reduces the disparity to

23% and the time needed to run a 100,000-run simulation with 98 nodes and a complexity of

1.8 is prohibitive (Figure 5).
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Table 3. Average % the ILP Exceeds Simulation (based on 1000 runs)

25% 50% 75% 100%
1.8_1 21% 21% 19% 21%
1.8_2 18% 22% 18% 20%
1.8_3 25% 19% 19% 20%
1.8_4 23% 19% 18% 18%
1.8_5 22% 20% 23% 21%
1.8_6 52% 27% 19% 19%
1.8_7 41% 20% 18% 20%
1.8_8 61% 30% 21% 21%
1.8_9 21% 18% 20% 22%
1.8_10 47% 32% 22% 21%
min 18% 18% 18% 18%
max 61% 32% 23% 22%
average 33% 23% 20% 20%
stdev 0.15 0.05 0.02 0.01
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0 { =
LP results 2.1_04 1,000 simulations 10,000 100,000
(time) (time) simulations (time) simulations (time)
=@=hrs. 0.00312 0.11667 0.78333 18.50000

Figure 5. Simulation Run Time Based on Number of Runs.

All told, an MILP accurately models the AoU, U. B. and L.B. Note that the MILP’s
consistently higher numbers—combined with the ineffectiveness of increasing the runs of the
simulation to meaningfully reduce the gap—speaks to the usefulness of the simulation as a
potentially more “practical” number for planning purposes. It is very rare, based on the

simulation results, for a project to reach the theoretical bounds revealed by the MILP. Planning
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for such an extreme and unlikely eventuality may be an inappropriate use of resources.
Planners may plan for the worst based on an MILP that in fact shows a theoretical maximum for
the U.B. that would rarely ever be realized during an actual project. A simulation with a small
number of runs can execute quickly and provide results similar to a simulation with a larger

number of runs that could not be run in a reasonable amount of time.
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5. REDUCING THE RISK FROM A CATASTROPHIC EVENT

Catastrophic events are very rare and thus unpredictable; therefore, they are often not
accounted for in the planning process. Further, they allow for very little recourse by the actors
after they occur. “As its name suggests, unforeseen uncertainty can’t be identified during
project planning. There is no Plan B. The team either is unaware of the event’s possibility or
considers it unlikely and doesn’t bother creating contingencies” (De Meyer, Loch, & Pich, 2002;
Geraldi, Lee-Kelley, & Kutsch, 2010). However, catastrophic events are arguably inevitable given
enough projects (Hallgren & Wilson, 2008). A catastrophic event can devastate an entity should
it occur during a project. A natural disaster, political crisis, extended labor unrest, or war can
permanently terminate a project leaving the harmed party without recourse to recover losses
from the responsible party. For instance, if a government contracting with a company is
overthrown, the new government might not recognize debts incurred or obligations born by the
defunct government.

But the situation causing a catastrophic event might be far more pedestrian than
revolution. In another example know to the author, a subcontractor on a large government
security renovation was responsible for installing blast resistant glass in several federal
buildings. The sub-contractor was given the go-ahead by the general contractor after the
concerned government agency gave the project the green light. The subcontractor purchased
the highly specialized glass on credit from his regular supplier and, because the scale of the
project would keep his company busy for well over a year, turned down other projects available
in the then booming commercial market. Subsequently, the government agency placed an
unexpected hold on the project pending the results of a departmental audit. The glass
subcontractor was not able to cancel the glass order and—even though the glass supplier was
willing to wait on payment—could not secure further credit for any new work. To make
matters worse, a financial crisis came on, eliminating most new commercial construction in the
subcontractor’s primary market even had additional credit been available. Both the suspension
of the government project and the severe economic downturn are the kind of catastrophic
events difficult to account for in a model. Although there may have been contractual or

18

www.manaraa.com



statutory remedies for breach of contract, these proceedings are difficult and time consuming
in the best structured agreements. Many agreements—particularly when dealing with foreign
and authoritarian governments—can prove practically impossible to enforce.

In determining the risk of a catastrophic event, the “worst case” outcomes will be used.
Thus, the analysis will be limited to adjustments to and comparisons of the U.B. of various
AoUs for a project. We will examine two approaches to scheduling to see how best to reduce
risk: roadrunner schedule start times and rail schedule start times.

5.1. Reducing Risk: Roadrunner Start Times

Since a key premise of this analysis is that catastrophic events are unpredictable, they
can occur at any time of the project with equal probability. Thus, lengthening the project could
add to the risk of occurrence. Hence, all else being equal, shorter is better. The basicMI LP
established in Section 2 requires each activity to start at the end of its latest finishing
predecessor but allows the program to select the best or worst duration (d,) as needed to
establish the U.B. and L.B. Thus the model follows roadrunner start time scheduling. Starting
each activity at its earliest possible time will inherently minimize the total time of the project
thereby minimizing the risk associated with the length of time to complete the project but
could increase the total cost associated with most discrete times. So, the model “as is” will
accomplish this method of scheduling a project to minimize the risk associated with a
catastrophic event by limiting the total time a project is underway. In this approach s; = (s; + d,)
for some i where (i, j) € E.

5.2. Reducing Risk: Rail Schedule Start Times

Artificially delaying the start times of an activity reduces the U.B but can extend the
duration of the project. We present one method to delay the start times: scheduled start time
(rail scheduling). Then we present three methods to compare the U.B.s of a project using this
method of delay.

In this approach, where S, is the scheduled start time of activity j, either s, = (s, + d,) for

some i where (i, j) € E or s, = S;.
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The methods used to compare the different AoUs of a project are also useful in
comparing the risks represented by the AoUs of different projects. To determine if rail
scheduling is superior to roadrunner scheduling we attempt to answer three questions:

(1) Does delaying the start times of activities reduce the U.B. for any individual time;
(2) Does the increase in start times increase the length of time to finish the project; and;
(3) Is the benefit in reduction of the U.B. for any given period or all periods outweigh the
increased length of the project?
5.3. Effects of Delaying Start Times on Costs of the Network
The results of the two methods (roadrunner start and rail start) on the U.B. of the AoU

for our representative 98 node network are shown in Figure 6.
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Figure 6. Roadrunner vs. Rail Schedule U.B.

After the very first few periods of a project where the AoUs are the same, forcing each
activity to start immediately after its last finishing predecessor—roadrunner scheduling—
increases the U.B. vs. rail scheduling and this holds true and increases over the first half of the
AoU and then remains higher until the last periods of the project when the AoUs again

converge. This pattern is consistent across all size networks and all complexities. A project’s

20

www.manaraa.com



rail schedule is set by using the average start time for each activity derived from the simulation

for that project.

5.3.1. Comparison of Costs at Different Completion Time

The primary rational for setting a start schedule with S;zu > S; roaarunner iS 10 lower the cost

at any given point of the AoU for as long as possible thus lowering the total risk at many points

of the project. The U.B. for the rail schedule compared to the U.B. for the roadrunner schedule

for the AoUs is shown in Figure 6 at given percentages of the completion time.

Table 4. Sums of Costs for Roadrunner and Rail Scheduling

At % 2. Z Average

of ILP reduction in
Completion ILP U.B. total cost with
Time U.BRail Roadrunner Rail Schedule

10% 123 202 -39.1%

25% 1094 1498 -27.0%

50% 2497 2679 -6.8%

75% 3055 3070 -0.5%

90% 3125 3125 0.0%

100% 3158 3158 0.0%

Compared to roadrunner scheduling, at the earlier stages of the project there is a

considerable reduction in risk using rail scheduling. The reduction in roadrunner cost using

rail scheduling is pronounced. The clear benefit of using rail scheduling is manifest in Table4.

Using rail schedule reduces risk for the first 50% of the project with an average reduction in

risk of 25%. This finding is consistent across projects.

However, using expected completion times from the simulation, rail scheduling extends

the time to complete the project (Figure 7).
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Figure 7. Rail start vs. Roadrunner Start Simulations

So, there is a tradeoff in how the schedule chosen affects the project: lower earlier costs
reducing risk, longer project completion times at greater total costs later in the project.

Since roadrunner scheduling will always have an activity start as soon as possible and
start adding costs as soon as possible we would expect the total cost for each t to be higher
than when using rail scheduling. Likewise, by delaying the start of some activities rail
scheduling pushes back the expected finish time of the entire project. Although the difference
is small (Table 5), We need to ascertain whether the reduction in risk during the bulk project is
worth the increased risk due to the lengthening of the time a catastrophic event can occur.

Table 5. Completion Time Rail vs. Roadrunner Scheduling

%

Sim Rail Sim Roadrunner increase
Schedule Schedule of Rail
final t 125 121 3.31%
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5.3.2. Simple NPV Comparison

Using a simple NPV analysis where we discount the marginal cost at each period, we can
normalize the AoUs to account for the change in duration of the project vs. the cost reduction
for roadrunner scheduling. Below are the cost schedules for the two start options under
consideration with the addition of the marginal cost schedules of the simulation.

Table 6. Total and Marginal Costs for Upper Bound

EV
EV Sim EV Sim
Sim Rail Roadrunner EV Sim Roadrunner
Schedule Schedule Rail Schedule Schedule
t Total Total Marginal Marginal
(weeks) Cost Cost Cost Cost
1 3 3 3 3
2 6 6 3 3
3 9 9 3 3
4 12 12 3 3
5 15 15 3 3
6 18 18 3 3
7 21 21 3 3
8 24 24 3 3
9 26 27 2 3
10 44 45 18 18
11 62 63 18 18
12 78 83 16 20
13 98 102 20 20
14 115 123 18 21
15 133 142 18 19
16 150 160 18 19
17 178 198 28 38
18 206 237 28 40
19 234 275 28 38
20 259 314 25 39
113 2298 2359 9 8
114 2305 2367 7 8
115 2309 2375 4 8
116 2313 2378 4 3
117 2316 2379 3 1
118 2318 2380 2 1
119 2319 2381 1 1
120 2320 2382 1 1
121 2321 2383 1 1
122 2322 2383 1
123 2323 2383 1
124 2324 2383 1
125 2325 2383 1
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The rail schedule yields a lower total cost for the project but has a longer expected
finish time based on the EV of the simulation.

The two options for discounting the U.B. cost schedule are to either discount the
marginal costs or to discount the total costs at each time t. Discounting the marginal costs
shows the incremental risk associated with an additional day of delay. Discounting only the
marginal costs ads only a very small additional cost to the project and does not reflect the total
additional risk of extending the completion of the project. When this increase is discounted
using NPV its additional risk is not just negligible, the overall NPV and thus risk is less using
rail scheduling since the NPV of the roadrunner periods overwhelms the extra costs for the
extra period to complete the project as shown in Table 7.

Table 7. NPV of Total Costs at 10%

Discount roadrunner additional
Rate (week) start (LP) rail start (LP)  cost of rail start
0.192% 2381.8579 2323.8572 -2%

This method of analysis may then underestimate the risk of extending the length of the
project.

One method to address this problem is to sum all maximum potential costs for all times
along the alphorn. What the “sum of all sums” does is reflect the potentially significant
increase in risk that could result in lengthening the project. In our example above, the
lengthening of the project due to the rail schedule is only five days, or less than 7% of the
project length. But those five days are five days of maximum risk for the project since they are
seven days of maximum costs. Using the NPV of the marginal costs, may not reflect this reality.
Indeed, as demonstrated below, marginal cost analysis shows little or no increase in risk (in this
case the reduction in risk is not consistent across all AoUs tested) for a delayed start time.
Using a marginal cost analysis would only add the additional risk of the slight increase in costs
from each increased T added by the rail schedule instead of the fact the entire cost of the

project is “on the line” for the extra days of delay.
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Using a simple NPV for the sum of all costs shows very little penalty for using rail
scheduling and thus delaying the finish time for the project. Discounting the total costs for
each T of the AoU yields the following NPVs for the sum of total costs (10% annual discount
rate, period unit = weeks):

Table 8. NPV Sum of Total Costs at 10%

Discount roadrunner rail additional
Rate (week) start (LP) start (LP) cost of rail start
0.192% 144,706 145,697 1%

Even though the sum of all costs shows a slight increase in risk for using rail scheduling
the risk is very small. But an inherent disadvantage of either simple NPV analysis is that it does
not account for the reality of a failure ending the cost stream to the project. It compares the
total NPV of the completed project. To better asses the risks of different methods of delaying
start times, some accounting must be made for the effects on the project of a catastrophic
event occurring during the project.

5.3.3. NPV Comparison Assuming Probability of a Catastrophic Event

A related method involves expected value of costs realizing some probability of
catastrophic failure during the project. Although catastrophic events as we are using the
concept here are exceedingly rare and therefore do not lend themselves to normal probability
evaluation, if we assign a probability even though small, we can get the NPV of the expected
costs considering some chance of failure at each step of the project. Assuming that
catastrophic disruptions occur at a rate of 0.01 each period we can model the likelihood of a

disruption by time t as:

-t
1-— e(?)
Where t = time period and:
_ 1
P= "ha-»
Where p = Daily rate of failure
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With this addition to the NPV analysis we put some consideration in the calculations
that a cost may not occur at all due to a catastrophic failure. The NPV of expected costs for
each t in the project after figuring the probability of failure is (discount rate 10%, daily rate
0.0274%):

Table 9. Cost Schedule with Probability of Failure

This results in the total NPV of costs at all t of the network, accounting for the risk of

roadrunner

t Exp. start rail start
(week) P(failure/day) Beta Cost  (simulation) (simulation)
1 0.010% 9999.5000 0.9999 2.9997 2.9997
2 0.010% 9999.5000 0.9998 5.9988 5.9988
3 0.010% 9999.5000 0.9997 8.9973 8.9973
4 0.010% 9999.5000 0.9996 11.9952 11.9952
5 0.010% 9999.5000 0.9995 14.9925 14.9925
6 0.010% 9999.5000 0.9994 17.9892 17.9892
7 0.010% 9999.5000 0.9993 20.9853 20.9853
8 0.010% 9999.5000 0.9992 23.9808 23.9808
9 0.010% 9999.5000 0.9991 26.9757 25.4771
10 0.010% 9999.5000 0.9990 44.9550 43.4565
100 0.010% 9999.5000 0.9900 2216.2254 2154.3474
101 0.010% 9999.5000 0.9900 2226.3983  2163.5365
102 0.010% 9999.5000 0.9899  2236.5691 2171.7338
103 0.010% 9999.5000 0.9898 2246.7378 2181.9091
104 0.010% 9999.5000 0.9897  2256.9045 2193.0719
105 0.010% 9999.5000 0.9896  2266.0796  2202.2533
106 0.010% 9999.5000 0.9895 2274.7581 2211.4329
107 0.010% 9999.5000 0.9894  2285.4135 2220.1160
108 0.010% 9999.5000 0.9893  2295.5722  2228.7973
109 0.010% 9999.5000 0.9892  2303.2559 2237.4769
110 0.010% 9999.5000 0.9891  2309.9490 2246.1547
111 0.010% 9999.5000 0.9890 2316.6407 2254.8307
112 0.010% 9999.5000 0.9889 2324.3200 2263.5050
113 0.010% 9999.5000 0.9888 2331.9976  2272.1775
114 0.010% 9999.5000 0.9887 2339.6738 2278.3766
115 0.010% 9999.5000 0.9886 2347.3483  2282.1030
116 0.010% 9999.5000 0.9885 2350.0790  2285.8287
117 0.010% 9999.5000 0.9884  2350.8323  2288.5652
118 0.010% 9999.5000 0.9883  2351.5855  2290.3129
119 0.010% 9999.5000 0.9882 2352.3385 2291.0720
120 0.010% 9999.5000 0.9881  2353.0914 2291.8310
121 0.010% 9999.5000 0.9880 2353.8440 2292.5898
122 0.010% 9999.5000 0.9879 2293.3484
123 0.010% 9999.5000 0.9878 2294.1068
124 0.010% 9999.5000 0.9877 2294.8651
125 0.010% 9999.5000 0.9876 2295.6232

failure for each t:
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Table 10. Project Completion Time: Rail vs. Roadrunner Scheduling

Rail Roadrunner Additional

98 Start Start Cost of
Nodes (LP) (LP) Rail Start
1.8_1 130 128 -1.54%
1.8_2 134 132 -1.49%
1.8_3 148 143 -3.38%
1.8_4 123 119 -3.25%
1.8_5 164 159 -3.05%
1.8_6 139 138 -0.72%
1.8_7 154 153 -0.65%
1.8_8 167 163 -2.40%
1.8_9 133 129 -3.01%
1.8_10 160 154 -3.75%
Average 2.23%
stdv 1.08%

Using this method of analysis, rail scheduling increases the risk of the project. Further,

there is a tradeoff between the different start protocols for longer projects: lower total

roadrunner cost for the entire project vs. lower rail schedule costs for discrete times during

most of the project. This increase in finish times for projects using rail scheduling is also

consistent across multiple projects (Table 11). Neither the additional time nor the additional

cost is great, but it is present and needs to be considered by project managers as they make

their scheduling decisions.

Table 11. Project Cost: Rail vs. Roadrunner (98 Node)

Discount

Rate Rail Roadrunner Additional
98 (10%/52 Start Start Cost of
Nodes weeks) (LP) (LP) Rail Start
1.8_1 10% 163,178 162.994 0.11%
1.8_2 10% 163,237 164,697 -0.88%
1.8_3 10% 192,604 189,901 1.42%
1.8_4 10% 153,478 145,428 5.67%
1.8_5 10% 211,349 207,666 1.77%
1.8_6 10% 199,133 190,885 4.32%
1.8_7 10% 179,372 175,356 2.29%
1.8_8 10% 196,453 191,299 2.69%
1.8_9 10% 160,779 157,744 1.92%
1.8_10 10% 179,127 174,013 2.94%
Average 2.23%
stdv 1.79%
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However, for smaller networks there was no advantage in total cost for roadrunner
scheduling vs. rail scheduling. This is also true across multiple projects. This would intuitively
make sense since there is less time needed to complete the entire project and thus less time for
the failure to occur using either method of scheduling.

Table 12. Project Cost: Rail vs. Roadrunner (20 Node)

Discount
Rate Rail Roadrunner Additional
20 (10%/52 Start Start Cost of
Nodes weeks) (LP) (LP) Rail Start
1.5_1 10% 18,564 19,974 7.60%
1.5_2 10% 24,801 24725 -0.31%
1.5_3 10% 23,741 23,298 -1.87%
1.5_4 10% 18,882 18,467 -2.20%
1.5_5 10% 16,207 15,594 -3.78%
1.5_6 10% 30,330 30,765 1.43%
1.5_7 10% 16,968 15,693 -7.51%
1.5_8 10% 18,718 17,369 -7.21%
1.5_.9 10% 24,993 26,708 6.86%
1.5_10 10% 16,858 18,375 9.00%
Average 0.20%
stdv 5.64%

5.4. Preferred Risk Reduction Strategy

Both methods for scheduling projects—roadrunner scheduling and rail scheduling—
have attributes that make them attractive to a project manager. Roadrunner scheduling has
the advantage of simplicity as few additional computations are needed once the AoU is
established. Further, road runner scheduling is intuitively pleasing and thus easy to explain to
and be understood by the parties involved. In the large development project detailed above, the
principles were uninterested in reducing risk any way except, “start everything right away, get
finished, get paid, and get out.” Further, for smaller projects, the entire duration of the project
is short and the risk reduction during the early part of the project is less important.

Rail scheduling has the significant advantage of reducing the maximum risk for many
stages of the project without unacceptably offsetting those reductions by extending the length
of the entire project. In addition, it gives any subcontractors on the project a “no earlier than”

start date for all activities of the project.
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Using the two real-world examples described above, the large development project, rail
scheduling is recommended because the complexity of the organization running the project
allows a more sophisticated scheduling approach and the savings are greater due to the much
longer duration of the project. The smaller “glass” project would benefit from U.B. planning
but would further benefit from the simpler roadrunner scheduling. However, an even simpler
method may have been available to this smaller and simpler project: a down payment from the
contractor to the glass sub-contractor to cover some or all the cost of the glass. In either case

using the U.B. of the AoU would benefit planners by establishing the maximum risk presented

by the projects.
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6. COMPARING UPPER BOUNDS FOR DIFFERENT PROJECTS

When comparing U.B.s of different projects, the same methods can be used to compare
risk that we used to compare risks between different U.B.s created for the same project using
different start times. If one of the U.B.s is below for every time period and thus lower cost for
the entirety of the project, we may consider this AoU superior (i.e. less risk) than the other for
the purpose of minimizing maximum risk. We may consider it akin to stochastic dominance as
used to compare probability distributions (Rothschild & Stiglitz, 1970). Where the difficulty
lies--as in all sstochastic dominance issues—is in comparing AoU U.B.s that do not clearly
dominate one another but rather cross or “twist”.

As an example, the following two crossing AoU U.B.s are both 98 node projects with a
complexity of 1.8 using roadrunner scheduling. It is not immediately clear which project has
less risk. Earlier in the life of both projects project A has lower potential maximum cost. But
later in the lives of the projects, project A has both higher maximum potential cost and a longer

project life.
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Figure 8. “Twisted” AoUs
6.1. The NPV of the Sum of Total Costs Method
Using the total cost with probability of failure is the preferred method for comparing
twisted AoUs. Table 13 shows the schedule of expected costs and Table 14 the NPVs associated

with that schedule. Here the discount rate is 8% per year with each period representing one

day.
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Table 13. Costs with Probability of Failure for Different Projects

t Exp. Expected Expected
(week) P(failure/day) Beta Cost Cost A Cost B

1 0.010% 9999.5000 0.9999 1.000 5.000
2 0.010% 9999.5000 0.9998 2.000 10.998
3 0.010% 9999.5000 0.9997 6.998 17.995
4 0.010% 9999.5000 0.9996 13.994 24.990
5 0.010% 9999.5000 0.9995 21.989 33.893
6 0.010% 9999.5000 0.9994 32.980 45.972
7 0.010% 9999.5000 0.9993 51.964 60.957
8 0.010% 9999.5000 0.9992 69.994 80.935

72 0.010% 9999.5000 0.9928 902.478 883.615

73 0.010% 9999.5000 0.9927 903.381 885.512

74 0.010% 9999.5000 0.9826 904.283 887.408

75 0.010% 9999.5000 0.9825 905.185 888.312

76 0.010% 9999.5000 0.9824 906.087 889.216

77 0.010% 9999.5000 0.9823 906.989 890.119

78 0.010% 9999.5000 0.9822 907.890 891.022

79 0.010% 9999.5000 0.9821 908.792 891.926

80 0.010% 9999.5000 0.9820 909.693

81 0.010% 9999.5000 0.9819 910.594

82 0.010% 9999.5000 0.9818 911.495

83 0.010% 9999.5000 0.9817 912.395

84 0.010% 9999.5000 0.9816 913.296

85 0.010% 9999.5000 0.9815 914.196

86 0.010% 9999.5000 0.9814 915.096

87 0.010% 9999.5000 0.9813 915.996

88 0.010% 9999.5000 0.9812 916.895

89 0.010% 9999.5000 0.9811 917.795

90 0.010% 9999.5000 0.9810 918.694

Table 14. NPV of Total Costs for sample “Twisted” Projects

Discount
Rate (day) NPV A NPV B
0.03% 57,722 48,303

Project B has a significantly lower risk profile than Project A. The roadrunner cost
savings of A are overcome with the higher cost later in the project and the longer duration of A.
Thus, using an LP to determine the U.B. of the AoU and applying the NPV adjustment with the
estimated probability of a catastrophic event can assist project managers in deciding between

different projects where one project is not clearly riskier than the other.

32

www.manaraa.com



7. SUMMARY

It is both necessary and possible to assess the risk of a project failing due to a
catastrophic event even if that event is extremely unlikely. Using the U.B. of the AoU, the
maximum cost possible at each time period of the project can assist in identifying the
maximum risk of a project. Further, different methods of scheduling can reduce the risk
during execution of a project. Using rail scheduling to delay some start times reduces the total
risk of a project compared to using roadrunner scheduling. Using NPV methods can also make
the AoU useful for comparing the total risk from catastrophic events for different projects.

We demonstrated that both the U.B. and L.B. of the AoU can be established using a MILP.
The legitimacy of the MILP was verified by using a simulation and comparing the results with
the MILP. In every case, the bounds established by the simulation were contained within the
bounds of the MILP. However, the likelihood of costs reaching an U.B. at any time during
project execution is so small that a project manager may decide the simulation is sufficient for

planning.
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8. AREAS FOR FUTURE RESEARCH

The following areas lend themselves naturally to further research:

(1) Since the numerical experiments assume a lump sum payment at the end for the
project, what are the effects on both solvability of the MILPs and on methods to extend
start times if payments are made upon completion of milestones or a set calendar
schedule?

(2) Is the presence of a “trip-wire” cost amount below which the catastrophic failure of a
project would not be catastrophic to the overall health of the entity engaging in the
project and above which the failure of the project would be catastrophic change the
decisions managers make about the project?

(3) Once actual costs for periods are known as the project progresses, does re-running the
MILPs change the risk profiles enough to change the decisions made by the project
managers (ex. crashing certain activities of the project).

(4) Computational improvements for the MILPs.

(5) Finding the optimal project schedule.

(6) Alternative measures of project risk and utility.

(7) Incorporating resource constraints.

(8) The ability to reduce buffer time for an activity if rail scheduling is used, the schedule
itself is a form of buffer.

(9) The impact of roadrunner and rail scheduling on the disbursement schedule.
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APPENDIX A: CPLEX CODE FOR THE UPPER BOUND

//
//
// Model for Upper Bound
//
//

//read in contents from .dat

intN=...; //total number of activities (indexed by j) //<--- greater equal to 1
intt=..; //time period being calculated

string outputFile= ...;

//

range Act=1 .. N; //Activities

//

int c[Act] = ...; //c_j = cost per period

int alAct] = ...; //a_j = minimum duration for activity j

int b[Act] = ...; //b_j = maximum duration for activity j

int r[Act] = ...; //r_j = rail schedule for activity j (rail schedule)

//model with activities on the arcs of a Figure
int p[Act][Act] = ...; // {0,1} predecessor matrix: p[from][to]=1 iff there (from, to) is an arc in the

Figure

//calculated values
int SUMB = sum(j in Act) b[j];
int numPre[j in Act] = sum(f in Act)(p[f][j]); //counts the number of predecessors for each

activity

int M1 = SUMB * 10;
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int M2 = SUMB * 10;

//decision variables
// d_j = duration of activity j, in [min,max] time of act. j (e2)(e3)
dvar float+  d[j in Act] in a[jl..b[j];

dvar float+ s[j in Act] in r[j] .. SUMB; //s_j = start time of activity j //vin: improved u.b. (rail

schedule)
dvar int+ x[Act] in O .. 1; //binary, to establish if act. j has started
dvar int+ y[Act] in O .. 1; //binary, to establish if act. j has finished

//Added as per Dr. Joe
dvar int+ F[Act][Act] in O .. 1; //binary to establish if i is a predecessor of j and j starts

immediately after i finishes.

dvar int+ G[Act] in 0 .. 1; //binary to establish if rail schedule is used
// total cost of act j through time range of z is between 0 and c[j]*b[j] (e8)
dvar float+  z[j in Act] in O .. c[j]*b[j]; //vin: improved u.b.

maximize sum(j in Act) z[jl; //(el)

subject tof
forall (j in Act)f
e2: sljl <= t+ MI*(1-x[j]);
e3: sljl >= t - MI*xljl;
e4: slj] + dljl <=t + M1*(1-ylj]);
e5: s[jl + dlj] >=t - MI*y[j];
e6: z[j] <= c[jI*(t - s[jl) + M2*(1 - x[j] + ylj]);

il*dljl+ M2*(1 - yljD);
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e8: z[j] <= M2*x[jl;
}
//for activities with predecessors
forall(j in Act : numPre[j] > 0){ //forces j to start

forall(i in Act : p[i][jl==1}{
e9: s[j] >= s[i] + dlil;
ell: s[j] <= s[i] + d[i] + M1*(1 - F[i][j]);
el2: s[j] >= s[i] + dli] - M1*(1 - F[il[jl);

}

forall (j in Act){
el3: s[jl <=rljl + M1*(1 - G[j]);
el4: s[j] >=r[j] - M1*(1 - G[j]);

}

forall (j in Act){
€10: sum(i in Act : pli][jl==1)
FJ(j] + GOl == 1;
}

//for activities with no predecessors

forall(j in Act : numPre[j]==0){

el4b: s[j] == 0;

40

www.manharaa.com



APPENDIX B: CPLEX CODE FOR THE LOWER BOUND

//
//
// Model for Lower Bound
//
//

//read in contents from .dat

intN=...; //total number of activities (indexed by j) //<--- greater equal to 1
intt=..; //time period being calculated

string outputFile= ...;

//

range Act=1 .. N; //Activities

//

int c[Act] = ...; //c_j = cost per period

int a[Act] = ...; //a_j = minimum duration for activity j

int b[Act] = ...; //b_j = maximum duration for activity j

int r[Act] = ...; //r_j = rail schedule for activity j (rail schedule)

//model with activities on the arcs of a Figure
int p[Act][Act] = ...; // {0,1} predecessors’ matrix: p[from][to]=1 iff there (from, to) is an arc in

the Figure

//calculated values
int SUMB = sum(j in Act) b[j];
int numPre[j in Act] = sum(f in Act)(p[f][j]); //counts the number of predecessors for each

activity

int M1 = SUMB * 10;
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int M2 = SUMB * 10;

//decision variables
// d_j = duration of activity j, in [min,max] time of act. j (e2)(e3)
dvar float+  d[j in Act] in a[jl..b[j];

dvar float+ s[j in Act] in r[j] .. SUMB; //s_j = start time of activity j //vin: improved u.b. (rail

schedule)
dvar int+ x[Act] in O .. 1; //binary, to establish if act. j has started
dvar int+ y[Act] in O .. 1; //binary, to establish if act. j has finished

//Added as per Dr. Joe
dvar int+ F[Act][Act] in O .. 1; //binary to establish if i is a predecessor of j and j starts

immediately after i finishes.

dvar int+ G[Act] in 0 .. 1; //binary to establish if rail schedule is used
// total cost of act j through time range of z is between 0 and c[j]*b[j] (e8)
dvar float+  z[j in Act] in O .. c[j]*b[j]; //vin: improved u.b.

minimize sum(j in Act) z[jl; //(el7)

subject tof
forall (j in Act){
e2: s[jl <= t + M1*(1-x[j]);
e3: s[j] >= t - MI*x[jl;
ed: s[j] + dl[jl <= t + M1*(1-y[j]);
e5: s[j] + d[jl >= t - M1*y[jl;
el8: z[j] >= c[jl*(t-s[j]) - M2*(1-x[jl+yljl);

e19: z[j jledlj] - M2*(1-y[jl);
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e20: z[j] >= -M2*x[j];

}

//for activities with predecessors
forall(j in Act : numPre[j] > 0){ //forces j to start
forall(i in Act : p[i][jl==1}{
€9: s[j] >= s[i] + dli];
ell: s[j] <= s[i] + d[i] + M1*(1 - F[il[j]);
el2: s[j] >= s[i] + dli] - M1*(1 - F[il[jl);

}

forall (j in Act){
el3: s[j] <=r[j] + M1*(1 - G[j]);
el4: s[j] >=r[j] - M1*(1 - G[j]);

}

forall (j in Act){
el10: sum(i in Act : plil[jl==1)
Fl(j] + GOl == 1;
}

//for activities with no predecessors

forall(j in Act : numPre[j]l==0){

el4b: s[j] == 0;
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APPENDIX C: CONTROL CODE TO RUN ALL T’S IN A NETWORK

//

//

//

//time period to loop upon t=[minT..maxT]
int maxT=..,;

int minT=...;

range Time=minT..maxT;

main {
//var filename="Alphorn20.dat";//Change this for the data file being used
var filename="Data_2.1_98/Alphorn2.1_1_11";//Change this for the data file being used

var modelname="AlphornSolution_UB.mod";

var source = new IloOplModelSource(modelname);
var def = new IloOplModelDefinition(source);

var cplex = new IloCplex();

var data0= new IloOplDataElements();

var data = new IloOplDataSource(filename);

data0.outputFile="output.txt"
/11771177771171777111777
//clean output file
var ofile = new IloOplOutputFile(data0.outputFile,false); //in overwrite mode
ofile.writeln("period;u.b.");
ofile.close();

thisOplModel.generate();
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var time( = new Date();

//loop over all t

for(var t in thisOplModel.Time){
data0.t=t
var opl = new IloOplModel(def,cplex);
opl.addDataSource(data0);
opl.addDataSource(data);

opl.generate();

if (cplex.solve()) {
writeln(cplex.getObjValue()); //Obj Value only. Best for exporting
to spreadsheet for additional work
// writeln("Period:\t " + t);
// writeln(" Obj Value:\t" + cplex.getObjValue());

opl.postProcess();

t
else {
writeln("No solution");
¥
¥
var timel = new Date();
writeln("solve time is ", timel-timeO);
opl.end();
data.end();
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def.end();

cplex.end();

source.end();

46

www.manharaa.com



APPENDIX D: CONTROL CODE TO SET NUMBER OF RUNS FOR CPLEX CODE

/,uuuu\,\h,\h,\haamuwuwuuwuwu‘,‘,w‘na.\a.\a.\.\a.\anann,w\

* OPL 12.5 Data
* Author: pds
* Creation Date: Nov 11, 2015 at 2:31:35 PM

.......................... ““““\*.*/

minT = 1;

maxT = 50;
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APPENDIX E: COMPLETE CODE AND SOLUTION SET FOR 11 NODE PROJECT

Activity

Cost ¢j:

duration dj:
start time sj:
schedule time rj:
Gj:

Fij:

ZCj:

finish time:

e2: s[j] <=t + M1*(1-
x[j]):

e3: s[j] >= t - M1*x[j]:
ed: s[jl +d[jl <=t +
MI*(1-y[j]):

e5: s[j] + d[jl >=t -
M1yljl:

€9: s[j] >= sli]+dli]:
ell: s[j] <= s[i] + d[i] +
M1*(1 - Flil[jD:

e12: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[j]*(t-s[j])
- M2*(1-x[jl+yljD):

e19: z[j] >= c[j]*d[j] -
M2*(1-y[j]):

e20: z[j] >= -M2*x[j]:
Flil[j] + Glj] == 1:

1
3
3

—_— O

00000000000

14
14

14
98
-78
1(-)1

-83

= O

00000000000

)

89

89

89
177
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-78

101

-83

0000000000T

18
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-70
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-78

-101

-83

0
0

00000000TO0O0

23
111

-65
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-78
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-83

0
0
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0000000T0O0O0

)
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89

25
113

-63
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-78
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-83

0000000T0O0O0

)

89
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113
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-78
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-83

0

0000000000T

)

89
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16
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0
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@)}

Period: 2 Obj Value

Cost ¢j; 3 3 4 5 5 5 5 4 3 5 1
duration dj: 14 2 11 5 2 2 5 3 4 5
start time sj: 0O 2 14 25 30 30 14 14 19 30 14
schedule time rj: 0 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 0 o0 0 O0 0 0 0 0 o0
) ) — () o () — — o o —
(@] (@] (@] (@) (@) (@) [e) [e) [e) [e) (@)
(@] (@] (@) — o o o (@) [e) (@) (e)
(@] (@] (@] (@) — — (@) (@) [e) — (@)
(@] (@] (@] (@) (@) (@) [e) [e) [e) (@) (@)
(@] (@] (@] (@) (@) (@) [e) (@) = (e} (@)
(@] (@] (@] (e) (@) (@) (@) [e) (@) (e) (@)
(@] (@] (@] (@) (@) (@) () [e) (@) (@) (@)
(@] (@] (@] (@) (@) (@) [e) (@) (@) (@) (@)
(@] (@] (@] (@) (@) (@) [e) (@) (@) (@) (@)
zcj: 6 0 0 O0 0O 0 0 0 0 0 o0
finish time: 14 4 25 30 32 32 19 17 23 36 19
. 7 — * -
;E.'])?U] <=t+Mixd 2 2 90 90 90 90 90 90 90 90 90

e3: s[jl >=t - M1*x]jl: -86  -86 2 2 2 2 2 2 2 2 2

ed: slj] + dljl <=t + 90 90 90 90 90 90 90 90 90 90 90

*(1-yljD:
e5:sjl + dfj] >=t -
MI*yljl: 2 2 2 2 2 2 2 2 2 2 2
e9: s[j] >= s[i]+dli]: 14 4 25 30 32 32 19 17 23 36 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][j]):
el2: s[j] >= s[i] + dli] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +

14 92 113 118 120 120 107 105 111 124 107

M1*(1 - G[jD):

Gz il-MUL g 7 78 78 78 78 78 78 78 78 78
el8: z[j] >= c[j]*(t-s[j]) - - 100 - - - - - - - -
- M2*(1-x[jl+ylj]): 100 100 100 100 100 100 100 100 100 100
el9: z[j] >= c[jl*dlj] - i ) i i i i i i i i i
M2*(1-yj]): 83 -83 83 83 -83 -83 -83 -83 -83 -83 -83
e20: z[j] >= -M2*x[jl: 0 0 0 0 0 0 0 0 0 0 0
e?: F[il[j] + G[j] == 1: 1 0 0 0 0 0 0 0 0 0 0
Period: 3 Obj Value: 9

Cost ¢j: 3 3 4 5 5 5 4 3 5 1
duration dj: 14 3 11 5 2 2 5 3 4 6 5
start time sj: O 3 14 25 30 30 14 14 19 30 14
schedule time rj: 0 10 17 21 21 10 10 13 21 10
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Gj: 1
o
o
o
o
o

Fij: g
o
o
o
o

ZCj: 9

finish time: 14

e2: s[j] <=t + M1*(1- 3

x[j]):

e3: s[j] >=t - M1*x[jl: -85

ed: s[jl +d[jl <=t + 91

MI*(1-y[j]:

e5:s[jl + d[j] >=t - 3

M1*yl[jl:

e9: s[j] >= s[i]+dli]: 14

ell: s[j] <= s[i] + d[i] + 14

M1*(1 - Flillj]):

el2: s[j] >= s[i] + dli] - 14

M1*(1 - Flillj]:

el3: s[j] <=r[j] +

M1*(1 - G[j]): 98

el4d: s[jl >=r[j] - M1*(1

- GljD: 8

el8: z[j] >= c[jlI*(t-s[j]) .99

- M2*(1-x[jl+ylj):

e19: z[j] >= c[jl*d[j] - 83

M2*(1-y[j]):

e20: z[j] >= -M2*x[jl: 0

e?: F[i][j] + G[j] == 1: 1

2

Cost ¢j: 3

duration dj: 14

start time sj: 0

schedule time rj: 0

Gj: 1

—_

w oo 00000000000

©  ®
= w

— O bk Ww

o

0000000000T

25
113

98

-78

-83

0
0

11
14
10

00000000T00 o

30
118

-58

98

25
17

50

£ o 00000001000 o

©
w o=

91

32
120

-56

98

30
21

00000001000 o

32
120

-56

98

30
21

o

0000000000T

19
107

14
10

o

0000000000T

17
105

-71

98

14
10

0 0 0
o o =
o o =)
o o =)
o = =)
o =) o
o =) =)
— =) =)
o =) =)
o =) =)
o =) =)
o =) =)
0 0 0
23 36 19
91 91 91
3 3 3
91 91 91
3 3 3
23 36 19
111 124 107
-65  -52  -69
98 98 98
-78 78 -78
99 99 -99
-83 -83 -83
0 0 0
0 0 0
3 5 1
4 6
19 30 14
13 21 10
0 0 0
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(@] (@] — (@) (@) (@) — — () (@) —
(@] (@] (@] (@) (@) (@) () () () (@) (@)
(@] (@] (@) — o (@) (e} (e} () (@) (@]
(@] (@] (@] (@) — — (@) (@) () — (@]
(@] (@] (@] (@) (@) (@) () (@) () (@] (@]
Fij: o o o o o o o o o o o
(@] (@] (@] (@) (@) (@) (e} [e) — (e} (@]
(@] (a] (@] (@) (@) (@) (@) (@) (@) (@] (@]
(@] (@] (@] (@) (@) (@) (@) (@) (@) (@] (@)
(@] (@] (@] (@) (@) (@) (@) (@) (@) (@) (@)
(@] (@] (@] (@) (@) (@) () (@) (@) (@] (@]
2cj: 2 0o o0 0 0 0 0 0 0 0 0
finish time: 14 8 25 30 32 32 19 17 23 36 19
. 3 — * -
f{fﬂﬁ“k t+ MI*(1 4 4 92 92 92 92 92 92 92 92 92

e3: s[j] >=t - M1*x]jl: -84 -84 4 4 4 4 4 4 4 4 4

ed: slj] + dljl <=t + 92 92 92 92 92 92 92 92 92 92 92

MI*(1-y[j]:
e5:s[jl + d[j] >=t -
e 4 4 4 4 4 4 4 4 4 4 4
M1*yl[jl:
€9: s[j] >= s[i]+d[i]: 14 8 25 30 32 32 19 17 23 36 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[jl >= s[i] + dli] -
M1*(1 - F[il[j]):

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[jI*(t-s[j])
- M2*(1-x[jl+ylj):

el9: z[j] >= c[j]*dlj] -

14 9 113 118 120 120 107 105 111 124 107

14 80 63 58 56 -56 69 -71 -65 -52 -69

98 98 98 98 98 98 98 98 98 98 98

-7’8 -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

98 98 98 98 98 98 -98 -98 -98 -98 -98

M2*(1-yl[j]):

e20: z[j] >= -M2*x[jl: 0 0 0 0 0 0 0 0 0 0 0
e?: F[il[j] + Glj] == 1: 1 0 0 0 0 0 0 0 0 0 0

s

Cost ¢j: 3 3 4 5 5 5 5 3 5 1
duration dj: 14 5 11 5 2 2 5 3 4

start time sj: 0 5 14 25 30 30 14 14 19 30 14
schedule time rj: 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 0 0 0 0 0 0 0 0 0
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o
o
o
o
o
Fij: o
o
o
o
o
o
Z(j: 15
finish time: 14
e2: s[j] <=t + M1*(1- 5
x[jl):

e3: s[j] >=t - M1*x[j]: -83
ed: s[jl +d[jl <=t +

M1*(1-ylj]): 93
e5:s[jl +d[jl >=t- 5

M1*yl[jl:

e9: s[j] >= s[il+dlil: 14
ell: s[j] <= s[i] + d[i] + 14
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dli] - 14
M1*(1 - F[i]l[jD:

el3:s[jl <=r[j] +

M1*(1 - Gj]): 98
eld: s[j] >=r[j] - M1*(1 78

- G[j]):

el8: z[j] >= c[jl*(tslj) o
- M2*(1-x[jl+yljD):

el9: z[j] >= c[j]*dl[j] -

M2*(1-ylj]): 83
e20: z[j] >= -M2*x[j]: 0
e?: F[il[j] + Glj] == 1: 1
1
Cost ¢j: 3
duration dj: 14
start time sj: 0
schedule time rj: 0
Gj: 1

00000000000

)

-83
93

10
98

-78

98

-78

-97

-83

—_— O O &Y W

0000000000T

25
113

98

-78

-97

-83

11
14
10

00000000TO0O0

o

93

93

30
118

-58

98

-78

-97

-83

25
17

52

0000000T0O00O0

32
120

-56

98

-78

-97

-83

30
21

0000000T0O00O0

o

93

93

32
120

-56

98

-78

-97

-83

30
21

0000000000T

o

93

93

19
107

98

-78

-97

-83

14
10

0000000000T

o

93

93

17
105

-71

98

-78

-97

-83

14
10

o o =
o o o
o o =)
o = =)
o =) o
o =) =)
— =) =)
o =) =)
o =) =)
o =) =)
o =) =)
0 0 0
23 36 19
93 93 93
5 5 5
93 93 93
5 5 5
23 36 19
111 124 107
-65  -52  -69
98 98 98
-78 78 -78
97 97 97
-83 -83 -83
0 0 0
0 0 0
3 5 1
4 6 5
19 30 14
13 21 10
0 0 0
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(@] (@) — (@) () o = = (@) o =
(@] (@] (@] () () () (@] (@] (@] (@) (@)
(@] (@] (@) — (e} (e} (@] (@] (@] (@) (@)
(@] (@] (@] (@) — — (@] (@] (@] — (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
Fij: o o o o o o o o o o o
(@] (@] (@] (@) (@) (@) (@) o = (e} (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
2¢j: 18 0 0 0 O 0 O 0 0 0 0
finish time: 14 12 25 30 32 32 19 17 23 36 19
iﬁ.'])‘?m <= t+ M1 6 6 94 94 94 94 94 94 94 94 94

e3: s[jl >=t - M1*x[j]: -82  -82
ed: s[jl +d[jl <=t +

(@)}
D
o)}
D
D
@)}
o)}
o)}
(o)}

M1*(1-ylj)):
e5:s[jl +d[jl >=t-

MI*yjl: 6 6 6 6 6 6 6 6 6 6 6
e9: s[j] >= s[il+dlil: 14 12 25 30 32 32 19 17 23 36 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[jl) i i ) ) ] ) ) ] ] ]
- M2 -xIj+ylj): 96 -96 96 96 -96 -96 -96 -96 -96 -96 -96

el9: z[j] >= c[j]*dl[j] -

14 100 113 118 120 120 107 105 111 124 107

14 -76 -63 -58 -56 -56 -69 -71 -65 -52 -69

78§ -v8§ -78§ -78 -78 -78 -78 -78 -78 -78 -78

83 83 83 83 83 83 -8 -8 -8 -83 -83

M2*(1-ylj):
e20: z[j] >= -M2*x[j]: 0 0 0 0 0 0 0 0 0 0 0
e?: F[il[j] + G[j] == 1: 1 0 0 0 0 0 0 0 0 0 0

Period: 7 Obj Value: 18

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O w
— O N~ W
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Fij:

© 00000000000

Z(j:

finish time:

e2: s[j] <=t + M1*(1-
x[jI):

e3: s[j] >= t - M1*x[j]: -81
ed: s[jl +d[jl <=t +

= <S00000000000
S <©00000000000
0200000000000
0200000000000
o < 00000000000
& < 00000000000
3200000000000
N ©200000000000

® % 00000000000
N 0o 00000000000

—_

vl

s

c

N g
v g
v g
N g
~ g
v g
v g
v g
N g

MI*(1-y[j]): 7 95 95 95 95 95 95 95 95 95 95
e5:s[jl +d[jl >=t-

MI%yljl: 81 7 7 7 7 7 7 7 7 7 7
e9: s[j] >= s[i]+dlil: 6 8 14 20 23 23 12 13 17 27 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[j]*(t-s[j]) i i i i i i i i i i i
- M2*(1-x[jylj)): 91 91 91 91 91 91 91 91 91 91 91

el9: z[j] >= c[jl*dl[j] -

94 96 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

83 83 83 -8 83 83 83 -8 -8 -83 -83

M2*(1-y[j]):
e20: z[j] >= -M2*x[j]: 0 0 0 0 0 0 0 0 0 0 0
e?: F[i][j] + Gl[j] == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 8 Obj Value: 18

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O w
— O 00 = W
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Fij:

00000000000

[
oo

VAQ

finish time:

e2: s[j] <=t + M1*(1-
x[jD):

e3: s[j] >=t - M1*x[j]: -80
ed: s[jl +d[jl <=t +

=< 00000000000
S o 00000000000
3o 00000000000
2o 00000000000
o< 00000000000
&< 00000000000
J© 00000000000
Yo 00000000000

© 00000000000

o
© ©o 00000000000

£

o g
o g
o g
o g
o g
o g
o g
o g
o g

" . 8 96 96 96 96 96 96 96 96 96 96
M1*(1-y[j]):
e5:s[jl + dfj] >=t - i
MI%yljl: 80 8 8 8 8 8 8 8 8 8 8
€9: s[j] >= s[i]+d[i]: 6 9 14 20 23 23 12 13 17 27 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[jl >= s[i] + dli] -
M1*(1 - F[il[j]):

el3: s[j] <=r[j] +
M1*(1 - G[j):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[j]) i i i i i i i i i i
- M2*(1-x[j+yTj)): 90 90 -90 90 -90 -90 -90 -90 -90 -90 -90

el9: z[j] >= c[jI*dlj] -

94 97 102 108 111 111 100 101 105 115 103

-82 -7v9 -74 -68 -65 -65 -76 -75 -71 -61 -73

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

-83 -83 83 -83 -83 -83 -83 -83 -83 -83 -83

M2*(1-ylj]):
e20: z[j] >= -M2*x[j]: 0 0 0 0 0 0 0 0 0
e?: Flil[j] + Gljl == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 9 Obj Value: 18

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O W
_ O © = W
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Fij:

00000000000

[
oo

Z(j:

finish time:

e2: s[j] <=t + M1*(1-
x[jD):

e3: s[j] >=t - M1*x[j]: -79 -79
ed: s[jl +d[jl <=t +

=< 00000000000
= S 00000000000
S o 00000000000
32 00000000000
032 00000000000
oS 00000000000
&% < 00000000000
J3© 00000000000
N o 00000000000

© 00000000000

(o)
©
©
J
©
J
O
J
©
J
©
J
o)
J
O
J
O
~N
o =
N Ol

©
O
O
©
©
O
O
©
O

M1*(1-ylj)):
e5:sjl + dfj] >=t -

MI*yjl: 79 9 9 9 9 9 9 9 9 9 9
€9: s[j] >= s[i]+d[i]: 6 10 14 20 23 23 12 13 17 27 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[jl >= s[i] + dli] -
M1*(1 - F[il[j]):

el3: s[j] <=r[j] +
M1*(1 - G[j):

el4: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jl*(t-s[j) ) ) ) ) ; ; . - - -
M2 x[j1+yIj)): 89 89 89 89 89 89 89 89 89 89 89

el9: z[j] >= c[jI*dlj] -

94 98 102 108 111 111 100 101 105 115 103

-82 -8 -74 -68 -65 -65 -76 -75 -71 -61 -73

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

83 83 83 -83 83 83 83 -8 -83 -83 -83

M2*(1-ylj]):
e20: z[j] >= -M2*x[j]: 0 0 0 0 0 0 0 0
e?: F[illj] + Gljl == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 10 Obj Value: (K]

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

10 10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O W
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(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
2cj: 8 0 0 o0 0 0 0 0 0 0 o0
finish time: 6 11 14 20 23 23 12 13 17 27 15
v ofil o *(1.
;E.'])?Uk t+M1*(1 10 10 98 98 98 98 98 98 98 98 08

e3: s[j] >=t - M1*x[jl:
ed: s[jl + d[jl <=t +

—_ 1
S
@ 1

»® &
(o] o
(0] (@}
(o] o
(0] (@}
(e} —
o (@)
(o] [
(0] (@}
(o] [
(0] (@}
(o] o
(0] (@}
<o} —
o (e}
<o} —
o (@)
<o} —
(0] (@)

M1*(1-ylj]):
e5: s[j] + djl >=t- 78 10 10 10 10 10 10 10 10 10 10
M1*y[jl:
e9: s[j] >= s[il+dlil: 6 11 14 20 23 23 12 13 17 27 15

el1: s[j] <= s[i] + d[i] +
M1*(1 - F[i][j]:

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[j]) i i i i i i i i i i
- M2*(1-x[jylj)): 88 -88 88 88 -88 -88 -88 -88 -88 -88 -88

el9: z[j] >= c[jl*dl[j] -

94 99 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

83 83 83 -8 83 83 83 -8 -8 -83 -83

M2*(1-y[j]):

e20: z[j] >= -M2*x[jl: 0 0 0 0 0 0 0 0 0 0 0
e?: Fil[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1

.

Cost ¢j: 3 4 5 5 5 5 3 5 1
duration dj: 6 1 4 2 2 2 3

start time sj: 0 11 10 17 21 21 10 10 13 21 10
schedule time rj: 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 1 1 1 1 1 1 1 1 1
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@] @] @] (@) (@) (@) @] @] @] (@) (@)
@] @] @] (@) (@) (@) @] @] @] (@) (@)
o] @] @] (@) (@) (@) @] o] @] (@) (@)
o] o] o] (@) (@) (@) o] o] o] (@) (@)
@] o] o] (@) (@) (@) o] @] @] (@) (@)

Fi_j: o] o] o] (@) (@) (@) o] o] o] (@) (@)
o] o] o] (@) (@) (@) o] o] o] (@) (@)
o] o] o] (@) (@) (@) o] o] o] (@) (@)
o] o] o] (@) (@) (@) o] o] o] (@) (@)
o] o] o] (@) (@) (@) o] o] o] (@) (@)
o] o] o] (@) (@) (@) o] o] o] (@) (@)

zcj: 18 0 4 0 0 0 5 4 0 0 1

finish time: 6 12 14 20 23 23 12 13 17 27 15

. ] — *(1-

;E.'])?U] <= t+MIxd 11 11 11 99 99 99 11 11 99 99 11

e3:s[jl >=t-M1*x[j]: -77 -77 -77 11 11 11 -77 -77 11 11 -77

ed: s[jl +d[jl <=t +

. 11
M1*(1-ylj)): 99 99 99 99 99 99 99 99 99 99
e5: s[jl + d[jl >=t -
R .77 11 11 11 11 11 11 11 11 11 11
M1*y[j]:
e9: s[j| >= s[i]+d[i]: 6 12 14 20 23 23 12 13 17 27 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[j]*(t-s[j])
- M2*(1x]+yTD): 1 1 1 1 1 1 1 1 1 1 1

e19: z[j] >= c[jl*dl[j] -

94 100 102 108 111 111 100 101 105 115 103

-82 -76 -74 68 -65 -65 -76 -75 -71 -61 -73

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

83 83 83 -8 83 83 83 -8 -8 -83 -83

M2*(1-ylj]):

e20: z[j] >= -M2*x[jl: -88 88 -88 -88 -83 -88 -88 -88 -88 -88 -88

e?: F[il[j] + Gl[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
50

Cost ¢j: 3 3 4 5 5 5 5 4 3 5 1

duration dj: 14 9 4 5 2 2 5 3 4

start time sj: 0 12 14 18 23 23 14 14 19 23 14

schedule time rj: 0 0 10 17 21 21 10 10 13 21 10

Gj: 1 1 0 0 0 0 0 0 0 0 0
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(@) (@) - (@) (@) (@) - - (@) (@) —
(@) (@) (@) o o o (@) (@) (@) o o
(@) (@) (@} p— () () (@} (@} (@) (@) o
(@] (@] (@] (@) p— — o o =) — o
(@) (@) (@) o o o (@) (@) (@) o o
Fij: o o o o o o o o o o o
(@) (@) (@) (@) (@) (@) (@} (@) — (@) (@)
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@)
(@) (@) (@) (@) (@) o (@) (@) (@) (@) (@)
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} o
2¢j: 3 0 0 0 0 0 0 0 0 0 0
finish time: 14 21 18 23 25 25 19 17 23 29 19
f{ﬁf])?m <=t+MIF- 5 15 100 100 100 100 100 100 100 100 100
e3:slj] >=t-MI*x[jl: -76 -76 12 12 12 12 12 12 12 12 12

e4: s[j] + dlj] <=t+ 100 100 100 100 100 100 100 100 100 100 100

M1*(1-y[j]):

e5:sjl +dfj] >=t -

MI*yljl: 12 12 12 12 12 12 12 12 12 12 12
€9: s[j] >= s[i]+dli]: 14 21 18 23 25 25 19 17 23 29 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - Flil[jD:

el2: s[jl >= s[i] + dli] -
M1*(1 - Flillj]):

el3: s[jl <=r[j] +
M1*(1 - G[jl):

el4: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[jl) ) i i ) i i i ) ) )
- M2*(L-xjl+yTi): 90 -90 -90 -90 -90 -90 -90 -90 -90 -90 -90

el9: z[j] >= c[j]*dlj] -

14 109 106 111 113 113 107 105 111 117 107

14 67 -70 65 -63 63 69 -71 -65 -59 -69

98 98 98 98 98 98 98 98 98 98 98

78§ -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

-83 -83 -8 -83 -83 -83 -8 -83 -83 -83 -83

M2*(1-y[j]):

e20: z[j] >= -M2*x[jl: 0 0 0 0 0 0 0 0 0 0 0

e?: Flil[j] + Gl[j] == 1: 1 0 0 0 0 0 0 0 0 0 0
39

Cost ¢j: 3 3 4 5 5 5 5 4 3 5

duration dj: 13 9 4 5 2 2 5 3 4

start time sj: 0 13 13 17 22 22 13 13 18 22 13

schedule time rj: 0 0 10 17 21 21 10 10 13 21 10

Gj: 1 1 0 0 0 0 0 0 0 0 0
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Fij:

00000000000
© 0000000000T

w
©

ZCj:

finish time:

e2: s[j] <=t + M1*(1-
x[j]):

e3: s[j] >=t - M1*x[jl:
ed: s[jl +d[jl <=t +

N e 00000000000
N o 00000000100
© o 00000001000
X <o 00000001000
% < 0000000000T
> 0000000000T
N e 00001000000
% < 00000001000
% < 0000000000T

—_
w
—
~l

—
w
[
w

101 101 101 101 101 101 101 101 101

1
~
92}
~
92}

13 13 13 13 13 13 13 13 13
101 101 101 101 101 101 101 101 101 101 101

M1*(1-y[j]):
e5: s[j] + d[jl >=t- 13 13 13 13 13 13 13 13 13 13 13
M1*y[jl:
e9: s[j] >= s[il+dlil: 13 22 17 22 24 24 18 16 22 28 18

el1: s[j] <= s[i] + d[i] +
M1*(1 - FIil[j]):

el2: s[j] >= sli] + dli] -
M1*(1 - Flil[j]):

el3: s[j] <=r[j] +
M1*(1 - G[j]):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[jl) ) i i ) i i i ) ) )
- M2*(L-xj1+yLD): 88 -88 88 88 -88 -88 -88 -88 -88 -88 -88

el9: z[j] >= c[j]*dl[j] -

13 110 105 110 112 112 106 104 110 116 106

13 -66 ##H# 66 64 64 -70 -72 -66 -60 0

98 98 98 98 98 98 98 98 98 98 98

78§ -v8§ -8 -78 -78 -78 -78 -78 -78 -78 -78

83 83 83 83 83 83 -8 -8 -8 -83 -83

M2*(1-ylj):

e20: z[j] >= -M2*x[jl: 0 0 0 0 0 0 0 0 0 0 0

e?: F[i][j] + G[j] == 1: 1 0 0 0 0 0 0 0 0 0 0
42

Cost cj: 3 3 4 5 5 5 5 4 3 5

duration dj: 14 9 11 5 2 2 5 4 4

start time sj: 0 14 14 25 30 30 14 14 19 30 14

schedule time rj: 0 0 10 17 21 21 10 10 13 21 10

Gj: 1 1 0 0 0 0 0 0 0 0 0
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(@] (@] — () (@) () — — o o —
(@) (@) (@) o o o (@) (@) (@) o o
(@) (@) (@} p— () (@) (@} (@) (@) (e} (e}
(@] (@] (@] (@) p— — o o o — o
(@) (@) (@) (@) (@) o (@) (@) (@) (e} (e}
Fij: o o o o o o o o o o o
(@) (@) (@) (@) (e} (e} (@} (@) — (@) (e}
(@) (@) (@) o o (e} (@) (@) (@) (@) (e}
(@) (@) (@) (e} o (@) (@) (@) (@) (@) (@)
(@) (@) (@) (@) o (@) (@) (@) (@) (@) (@)
(@) (@) (@) (e} (@) (@) (@) (@) (@) (@) (@)
2¢j: 42 0 0 0 O 0O 0 0 0 0 0
finish time: 14 23 25 30 32 32 19 18 23 36 19
f{ﬁf])?m <=t+MIFQ- 0 4 14 102 102 102 14 14 102 102 14
e3:slj] >= t - MI*x[jl: -74 -74 74 14 14 14 -74 -74 14 14 -74

ed: s[jl +d[jl <=t +

MLy i) 14 102 102 102 102 102 102 102 102 102 102
es: slj] + d[j] >=t- 74 14 14 14 14 14 14 14 14 14 14
M1*y[jl:

e9: s[j] >= s[ij+dlil: 14 23 25 30 32 32 19 18 23 36 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - Flil[jD:

el2: s[jl >= s[i] + dli] -
M1*(1 - Flil[jD:

el3: s[jl <=r[j] +
M1*(1 - Gljl):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[j])
- M2*(L-xjl+yTi): 0 0 0 0 0 0 0 0 0 0 0

el9: z[j] >= c[j]*dlj] -

14 111 113 118 120 120 107 106 111 124 107

14 65 63 58 -56 -56 69 -70 -65 -52 -69

98 98 98 98 98 98 98 98 98 98 98

78 -v8§ -8 -78 -78 -78 -78 -78 -78 -78 -78

83 83 83 -83 -8 -83 -8 -83 -83 -83 -83

M2*(1-y[j]):

e20: z[j] >= -M2*x[j]: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88

e?: Flil[j] + G[j] == 1: 1 0 0 0 0 0 0 0 0 0 0
56

Cost ¢j: 3 3 4 5 5 5 5 4 3 5

duration dj: 14 9 11 5 2 2 5 5 4

start time sj: 0 15 14 25 30 30 14 14 19 30 14

schedule time rj: 0 0 10 17 21 21 10 10 13 21 10

Gj: 1 1 0 0 0 0 0 0 0 0 0
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o o — ) ) ) — —_ o ) —
(@) (@) (@) o o o (@) (@) (@) o o
(@) (@) (@} p— () () (@} (@} (@) (@) o
=) -} o [« — — o o =) —_ o
(@) (@) (@) o o o (@) (@) (@) o o
Fij: o o o o o o o o o o o
(@) (@) (@) (@) (@) (@) (@} (@) — (@) (@)
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@)
(@) (@) (@) (@) (@) o (@) (@) (@) (@) (@)
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} o
2¢j: 42 0 4 0 0 0 5 4 0 0 1
finish time: 14 24 25 30 32 32 19 19 23 36 19
iﬁf])‘f'm <=t+MI*(- 4o 45 95 103 103 103 15 15 103 103 15
e3:slj] >= t-MI*x[jl: -73 -73 73 15 15 15 -73 -73 15 15 -73

ed: s[j] + dlj] <=t+ 15 103 103 103 103 103 103 103 103 103 103

M1*(1-y[j]):

e5:sjl +dfj] >=t - i

MI*yljl: 73 15 15 15 15 15 15 15 15 15 15
€9: s[j] >= s[i]+d[i]: 14 24 25 30 32 32 19 19 23 36 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[j] >= s[i] + dli] -
M1*(1 - F[il[j]):

el3: s[j] <=r[j] +
M1*(1 - G[j):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[jI*(t-s[j])
- M2*(1-x[jl+ylj):

el9: z[j] >= c[j]*dlj] -

14 112 113 118 120 120 107 107 111 124 107

14 64 63 58 -56 -56 69 -69 -65 -52 -69

-7’8 -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

83 83 -8 -83 -83 -83 -8 -83 -83 -83 -83

M2*(1-yl[j]):

e20: z[j] >= -M2*x[jl: -88 -88 88 -88 -88 -88 -88 -88 -88 -88 -88

e?: Flil[j] + Glj] == 1: 1 0 0 0 0 0 0 0 0 0 0
70

Cost ¢j: 3 3 4 5 5 5 5 4 3 5 1

duration dj: 14 9 11 5 2 2 5 6 4

start time sj: 0 16 14 25 30 30 14 14 19 30 14

schedule time rj: 0 0 10 17 21 21 10 10 13 21 10

Gj: 1 1 0 0 0 0 0 0 0 0 0
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Fij:

00000000000
© 00000000000
0000000000T

—_
o

VAQ 42
finish time: 14
e2: s[j] <=t + M1*(1-
x[jD):

e3: s[j] >=t - M1*x[jl: -72
ed: s[jl +d[jl <=t +

S 0000000000T
S o 00000000100
Ko 00000001000
o 00000001000
S 00000000001
3o 00001000000
S < 00000001000
S~ 0000000000T

N
ul
—_
<]

—_
(=)}
(=1
(=)}
—_
(=)}

104 104 104

—_
(@)
—_
(®)]

104 104

—_
(o)}

16 16 16

]
~
N
]
~
N

16 16

4
N
1
4
N
1
4
N

16 104 104 104 104 104 104 104 104 104 104

MI1*(1-y[j]):

e5:sjl + dfj]l >=t - i

MI*yljl: 72 16 16 16 16 16 16 16 16 16 16
€9: s[j] >= s[i]+d[i]: 14 25 25 30 32 32 19 20 23 36 20

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[jl >= s[i] + dli] -
M1*(1 - F[il[j]):

el3: s[jl <=r[j] +
M1*(1 - G[jl):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[jI*(t-s[j])
- M2*(1-x[j+ylj)): 2 2 2 2 2 2 2 2 2 2 2

el9: z[j] >= c[j]*dlj] -

14 113 113 118 120 120 107 108 111 124 108

14 63 63 -58 -56 -56 69 -68 -65 -52 -68

-7’8 -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

-82 -82 -82 -82 -82 -82 -82 -82 -82 -82 -82

M2*(1-ylj]):
e20: z[j] >= -M2*x[j]: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: Flilljl + Glj] == 1: 1 0 0 0 0 0 0 0 0 0 0

Period: 17 Obj Value: [

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

17 10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O W
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o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
Fij: o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
ZCj: 18 0 16 0 0 0 10 12 12 0 5
finish time: 6 18 14 20 23 23 12 13 17 27 15

e2: s[j] <=t + M1*(1-
x[j]):

e3: s[j] >=t - M1*x[jl: 71 71 71 17 17 17 -71 -71 -71 17 -71
ed: s[jl +d[jl <=t +
M1*(1-y[j]):
e5:s[jl+d[jl >=t-
M1*yl[jl:

e9: sj] >= s[i]+dl[i]: 6 18 14 20 23 23 12 13 17 27 15
ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dli] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[jl) i i i i i i i i i i

- M2*(1-x[jylj)): 81 81 81 81 -81 81 81 81 81 81 81
e19: z[j] >= c[jl*dl[j] -

17 17 17 105 105 105 17 17 17 105 17

17 105 17 105 105 105 17 17 105 105 17

-71 17 -71 17 17 17 71  -71 17 17 -71

94 106 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

M2*(1-y[j]):
e20: z[j] >= -M2*x[j]: -88 -88 -8 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 18 Obj Value: g

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

18 10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O w
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Fij:

00000000000
00000000000
00000000000
00000000000
00000000000
© 00000000000
v 00000000000

—_
o
—_
D
—_
(=)
—_
N
—
N

VAQ

finish time:

e2: s[j] <= t+ M1*(1-
x[jl):

e3: s[j] >= t - M1*x[jl:
ed: s[jl + d[jl <=t +

© < 00000000000
S w1 00000000000
3200000000000
3200000000000

o))
[—
=
[—
N
o
w
p—
N
N
~
p—
ui

p—
0]
—
o
[u—
0
[a—
0]

106 106

~
=]
1
~
]
1
~
=]
1
~
=]
—_
0]
—_
0]
—
o
—_
S
(@))
—
o

18 18

4
=
~
=
1
4
=
—
o)
1
4
(=

M1y i) 18 106 18 106 106 106 18 18 18 106 18
e5: s[j] + d[jl >=t- 70 18 -70 18 18 18 -70 -70 -70 18 -70
M1*yljl:

e9: s[j] >= s[il+dlil: 6 19 14 20 23 23 12 13 17 27 15

el1: s[j] <= s[i] + d[i] +
M1%(1 - FIil[j)):

el2: s[jl >= s[i] + dli] -
M1*(1 - Flil[jD:

el3: s[jl <=r[j] +
M1*(1 - Gljl):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[j) i i i i i i i ) ) )
- M2*(1-x[j+yl)): 80 -8 -80 -80 -80 -80 -80 -80 -80 -80 -80

el9: z[j] >= c[j]*dlj] -

94 107 102 108 111 111 100 101 105 115 103

82 69 -74 68 65 65 -76 -75 -71 -61 -73

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

M2*(1-yljl): 5 5 5 5 5 5 5 5 5 ) 5
e20: z[j] >= -M2*x[jl: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: Fil[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
83

Cost cj: 3 4 5 5 5 5 4 3 5 1
duration dj: 6 1 4 2 2 3 4

start time sj: 0 19 10 17 21 21 10 10 13 21 10
schedule time rj: 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 1 1 1 1 1 1 1 1 1
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(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)
(@] (@] (@] (@) (@) (@) (@] (@] (@] (@) (@)

z¢j: 18 0 16 10 O 0 10 12 12 0 5

finish time: 6 20 14 20 23 23 12 13 17 27 15

. 1 — * -

f{f].'])?m <= t+ MI*(1 19 19 19 19 107 107 19 19 19 107 19

e3:s[jl>=t-MI*[j; 69 69 69 69 19 19 -69 69 69 19 -69

ed: s[jl +d[jl <=t +

. 19 107 19 107 107 107 19 19 19 107 1

M1 i) 9 10 9 107 107 10 9 19 19 10 9

e5: s[j] + d[jl >=t- 69 19 69 19 19 19 69 -69 -69 19 -69

M1*y[jl:

e9: s[j] >= s[il+d[il: 6 20 14 20 23 23 12 13 17 27 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[j])
- M2*(1-x[jl+yljD):

e19: z[j] >= c[jl*dl[j] -

94 108 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

79 -9 -9 -79 -79 -79 -79 -79 -79 -79 -79

M2*(1-ylj]):

e20: z[j] >= -M2*x[jl: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88

e?: Fil[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
"

Cost ¢j: 4 5 5 5 5 3 5 1

duration dj: 1 4 2 2 2 3 4 6

20 10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

start time sj:
schedule time rj:
Gj:

_ o O O w
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(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}

2¢j: 18 0 16 15 0 0 10 12 12 0 5

finish time: 6 21 14 20 23 23 12 13 17 27 15

. 1 — * -

f{ﬁ.'])?m SUEMIMI- hh 0 o9 20 20 108 108 20 20 20 108 20

e3:sljl >= t- MI*x[j 68 -68 -68 -68 20 20 -68 -68 -68 20 -68

ed: s[jl +d[jl <=t +

MO, 20 108 20 108 108 108 20 20 20 108 20

e5: sj] + d[j] >=t- 68 20 68 20 20 20 -68 -68 -68 20 -68

M1*yl[jl:

€9: s[j] >= s[il+d[il: 6 21 14 20 23 23 12 13 17 27 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][j]:

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[j]*(t-s[j]) i i i ) ) ) ] ) ) ) )
- M2*(L-x[jl+yL): 78 78 78 78 78 78 78 78 78 78 78

e19: z[j] >= c[jl*dl[j] -

94 109 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

M2*(1-y[j]):
e20: z[j] >= -M2*x[j]: -88 -88 -8 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 21 Obj Value: |t

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O Ww
N
—
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(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
2cj: 18 0 16 15 0 0 10 12 12 0 5
finish time: 6 22 14 20 23 23 12 13 17 27 15
. 1 — * -
f{f].'])?m <= t+MI*d 21 21 21 21 109 109 21 21 21 109 21
e3:sljl >= t - MI*x[jl: -67 -67 -67 -67 21 21 -67 67 67 21 -67
ed: s[jl +d[jl <=t +
. 21 1 21 21 109 109 21 21 21 109 21
MI*(1-yljl): 09 09 109 09
e5:sjl + dfj] >=t - i i i i i i i
Vi) 67 21 -67 67 21 21 67 -67 67 21 67
e9: sjl >= slil+dlil: 6 22 14 20 23 23 12 13 17 27 15

el1: s[jl <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[jI*(t-s[j]) i i i i i i i i i i
- M2*(1-x[j+ylj)): 77 77 <77 77 77 <77 <77 77 77 77 77

el9: z[j] >= c[jl*dlj] -

94 110 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

M2*(1-y[j]):
e20: z[j] >= -M2*x[j: -88 -88 -8 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[illj] + G[jl == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 22 Obj Value: |[eE]

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

22 10 17 22 22 10 10 13 22 10
10 17 21 21 10 10 13 21 10

_ o O O Ww
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(@] (@] (@] [e) (@) (@) [e) [e) [e) (@) [e)
(@] (@] (@] (@) (@) (@) [e) [e) [e) (@) (@)
(@] (@] (@] (@) (@) (@) [e) (@) [e) (@) (e)
= = - o — — o o o — o
(@] (@] (@] (@) (@) (@) [e) [e) [e) (@) (@)
(@] (@] (@] (@) (@) (@) [e) (@) [e) (@) (@)
(@] (@] (@] (@) (@) (@) (@) (@) (@) (e) (@)
(@] (@] (@] (@) (@) (e) () [e) (@) (@) (e)
(@] (@] (@] (@) (@) (@) [e) (@) (@) (@) (@)
(@] (@] (@] (@) (@) (@) (@) (@) (@) (e) (@)

zcj: 18 0 16 25 O 0 10 12 12 0 5

finish time: 6 23 14 22 24 24 12 13 17 28 15

f{ﬁf])?m <=t+MIFQ- 5o 5 oo 90 110 110 22 22 22 22 22

e3:s[jl >=t- MI*x[j. 66 -66 -66 66 22 22 -66 -66 -66 -66 -66

ed: s[jl +d[j] <=t +

S+ 22 110 22 22 110 110 22 22 22 110 22

M1*(1-yljl):

e5: s[j] + d[jl >=t- 66 22 66 66 22 22 66 -66 -66 22 -66

M1*y[jl:

e9: s[j] >= s[il+d[il: 6 23 14 22 24 24 12 13 17 28 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dl[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - Gljl):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[jl) i i i i i i i i i i

- M2*(1-x[jyTj)): 76  -76 76 76 -76 76 76 76 76 -76 -76
el9: z[j] >= c[jI*dlj] -
M2*(1-yl[j]):

€20: z[j] >= -M2*x[jl: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[il[j] + Glj] == 1:
Period: 23 Obj Value: |jl

94 111 102 110 112 112 100 101 105 116 103

-82 65 -74 66 64 64 -76 -75 -71 -60 -73

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

1
1
Cost ¢j: 3
duration dj: 6 1 11 3 2 2 2 3 4
start time sj: 0 23 10 21 24 24 10 10 13 24 10
schedule time rj: 0 10 17 21 21 10 10 13 21 10
1

Gj:
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(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@] — [e) [e) (@) (@) (@) (e} (e}
(@) (@) (@) (e} = = (@) (@) (@) = (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}

2¢j: 18 0 44 10 0O 0 10 12 12 0 5

finish time: 6 24 21 24 26 26 12 13 17 30 15

f{f].:])?m SUEMIFA- 53 53 53 23 111 111 23 23 23 111 23

e3:slj] >=t- MI*x[jl: -65 -65 65 -65 23 23 65 -65 -65 23 -65

ed: s[jl +d[jl <=t +

Sl 23 111 23 111 111 111 23 23 23 111 23

M1*(1-yljl):

e5: slj] + dfj] >=t- 65 23 65 23 23 23 -65 -65 -65 23 -65

M1*yljl:

e9: s[j] >= s[il+d[il: 6 24 21 24 26 26 12 13 17 30 15

el1: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dli] -
M1*(1 - F[i][j]):

el3: s[j] <=r[j] +
M1*(1 - Gljl):

eld: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[j]*(t-s[j])
- M2*(1-x[jl+yljD:

e19: z[j] >= c[jl*dl[j] -
M2*(1-y[j]):

e20: z[j] >= -M2*x[jl: -88 -88 -88 -8 -88 -88 -88 -88 -88 -88 -88
e?: F[i][j] + G[j] == 1:
Period: 24 Obj Value:

94 112 109 112 114 114 100 101 105 118 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

75 75 75 75 75 <75 75 75 75 75 75

—
D

1

1

Cost ¢j: 3
duration dj: 6 1 11 3 2 2 2 3 4 6 5
start time sj: 0 24 10 21 24 24 10 10 13 24 10
schedule time rj: 0 10 17 21 21 10 10 13 21 10
1

Gj:
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(@) (@) (@) (@) (@) (@) (@) (@) (@) (@) o
(@) (@) (@) o o o (@) (@) (@) o o
(@) (@) (@) — (@) (@) (@) (@) (@) (@) o
(@) (@) (@) o — — (@) (@) (@) — (e}
(@) (@) (@) o o o (@) (@) (@) o o
Fij: o o o o o o o o o o o
(@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@)
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@)
(@) (@) (@) (@) (@) o (@) (@) (@) (@) (@)
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} o
7Cj: 18 0 44 15 0 0 10 12 12 0 5
finish time: 6 25 21 24 26 26 12 13 17 30 15
f{ﬁf])?m <=T+MIFQ- 5y o4 24 24 112 112 24 24 24 112 24
e3:s[jl >= t- M1*x[jl: -64 -64 -64 64 24 24 64 64 -64 24 -64
ed: s[jl +d[jl <=t +
Sul+ 24 112 24 112 112 112 24 24 24 112 24
M1*(1-ylj]):
es: slj] + d[j] >=t- 64 24 64 24 24 24 64 -64 -64 24 -64
M1*yljl:
e9: slj] >= slil+dlil: 6 25 21 24 26 26 12 13 17 30 15

el1: s[jl <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[j] >= s[i] + dli] -
M1*(1 - F[il[j]):

el3:s[j] <=r[j] +
M1*(1 - G[jl):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[jI*(t-sj) ) ) ) ) ; ; . - - -
M2 xIj1+yIj)): 74 74 74 74 74 74 74 74 74 74 74

el9: z[j] >= c[jI*dlj] -

94 113 109 112 114 114 100 101 105 118 103

-82 -63 -67 -64 -62 -62 -76 -75 -71 -58 -73

10 10 10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5 5 5

M2*(1-ylj]):
e20: z[j] >= -M2*x[j]: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[illj] + Gljl == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 25 Obj Value: @4l

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

25 10 21 25 25 10 10 13 25 10
10 17 21 21 10 10 13 21 10

_ o O O W
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(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@] — (@) (@) [e) (e} (e} (e} (e}
(@) (@) (@) (e} = = (e} (e} (e} = (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
2cj: 18 0 44 20 0 0 10 12 12 0 5
finish time: 6 26 21 25 27 27 12 13 17 31 15
. 1 — * -
f{f].'])?m <= t+MI*d 25 25 25 25 113 113 25 25 25 25 25
e3:s[j] >=t - MI*x[jl: -63 -63 63 -63 25 25 -63 -63 -63 -63 -63
ed: s[jl +d[jl <=t +
. 25 113 25 25 113 113 25 25 25 113 2
ML*Coy[iD: 5 113 25 25 113 113 25 25 25 113 25
e5:sjl + dfj] >=t - i i i i i i i
Vi 63 25 63 63 25 25 63 -63 -63 25 -63
¢9: s[j] >= sfil-+dlil: 6 26 21 25 27 27 12 13 17 31 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[jl >= s[i] + dli] -
M1*(1 - F[il[j]):

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[jI*(t-s[j]) i i i i i i i i i i i
- M2*(1-x[j+ylj)): 73 73 73 73 73 73 73 73 73 73 73

el9: z[j] >= c[jI*dlj] -

94 114 109 113 115 115 100 101 105 119 103

-82 -62 -67 -63 -61 -61 -76 -75 -71 -57 -73

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5 5 5

M2*(1-yl[j):

€20: z[j] >= -M2*x[jl: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
Cost ¢j: 4 5 5 5 5 3 5 1
duration dj: 1 11 2 2 2 3 4

26 10 21 26 26 10 10 13 26 10
10 17 21 21 10 10 13 21 10

start time sj:
schedule time rj:
Gj:

_ o O O Ww
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(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) — (@) (e} (@) (@) (@) (e} (e}
) e} e} (@] — = o o o — o
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}
(@) (@) (@) (e} (e} (e} (@) (@) (@) (e} (e}

2¢j: 18 0 44 25 0 0 10 12 12 0 5

finish time: 6 27 21 26 28 28 12 13 17 32 15

. 1 — * -

f{f].'])?m <= t+ MI*(1 26 26 26 26 114 114 26 26 26 114 26

e3:sljl >=t- MI*x[jl; 62 62 -62 -62 26 26 -62 -62 -62 26 -62

e4: s[jl + d[jl <=t +

. 26 114 26 114 114 114 26 26 26 114 2

MG 6 6 6 26 26 6

e5: slj] + dfj] >=t- 62 26 62 26 26 26 -62 -62 -62 26 -62

M1#yljl:

¢9: sj] >= sli+dlil: 6 27 21 26 28 28 12 13 17 32 15

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][j]:

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[jl) ) ) ] ] ) ) ) ) ) )
M2 X1y LD: 72 72 72 72 72 W72 720 720 720 720 72

e19: z[j] >= c[jl*dl[j] -

94 115 109 114 116 116 100 101 105 120 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5 5 5

M2*(1-ylj]):

e20: z[j] >= -M2*x[jl: -88 88 -88 -88 -83 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
Cost ¢j: 3 3 4 5 5 5 5 4 3 5 1
duration dj: 14 9 11 5 2 2 2 3 4

start time sj: 0 27 14 25 30 30 14 14 16 30 14
schedule time rj: 0 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 0 0 0 0 0 0 0 0 0
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(@) (@) = (e} (e} (e} = = (e} (e} =
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@] — (@) (@) [e) (e} (e} (e} (e}
(@) (@) (@) (e} = = (e} (e} (e} = (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} — (@) (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
(@) (@) (@) (e} (e} (e} (e} (e} (e} (e} (e}
2cj: 42 0 44 10 0 0 10 12 12 0 5
finish time: 14 36 25 30 32 32 16 17 20 36 19
. 1 — ¥ -
f{ﬁ.'])?[” <= t+MI*d 27 27 27 27 115 115 27 27 27 115 27
e3:slj]>=t- MI*x[jl: -61 -61 -61 ~-61 27 27 -61 -61 -61 27 -61
ed: s[jl +d[jl <=t +
. 27 115 27 115 115 115 27 27 27 115 27
e5:sjl + dfj]l >=t - ) ) ; ; . ;
Mo 61 27 -61 27 27 27 -61 -61 -61 27 -61
¢9: s[j] >= sfil-+dlil: 14 36 25 30 32 32 16 17 20 36 19

el1: s[jl <= s[i] + d[i] +
M1*(1 - F[il[j]):

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD:

el8: z[j] >= c[jI*(t-s[j]) i i i i i i i i i i
- M2+ -x[j+ylj)): 75 75 <75 75 75 75 <75 75 75 75 <75

e19: z[j] >= c[jl*d[j] -

14 124 113 118 120 120 104 105 108 124 107

14 52 -63 -58 -56 -56 -72 -71 -68 -52 -69

98 98 98 98 98 98 98 98 98 98 98

78§ -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

5 5 5 5 5 > 5 5 5 5 5

M2*(1-y[j]):
e20: z[j] >= -M2*x[j]: 88§ 88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[illj] + G[jl == 1: 1 0 0 0 0 0 0 0 0 0 0

Period: 28 Obj Value: B

Cost ¢j:

duration dj:
start time sj:
schedule time rj:
Gj:

28 10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O Ww
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Fij:

VAQ

finish time:

e2: s[j] <= t+ M1*(1-
x[j]):

e3: s[j] >= t - M1*x[j]:
ed: s[jl + d[jl <=t +
M1*(1-y[jD:

e5: s[jl + d[jl >=t -
M1yl

e9: s[j] >= s[i]+dl[il:
ell: s[j] <= s[i] + d[i] +
MI*(1 - F[il[jD:

el2: s[j] >= s[i] + dl[i] -
M1*(1 - F[i][jD:

el3: s[jl <=r[j] +
M1*(1 - G[jl):

eld: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[j])
- M2*(1-x[jl+yljD):

el9: z[j] >= c[jl*dlj] -
M2*(1-ylj]):

e20: z[j] >= -M2*x[j]:
e?: Flil[j] + G[j] == 1:

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

00000000000

—
SRENC)

N s N
oo%oo

-60

94

-82

10

10

-70

-88

138

_ o O O w

S < 00000000000

|
N
S =

116

28
29
117

-59

10

10

-70

-88

29

00000000000

— =
F NN

N s N
oo%oo

-60
14
102

-74

10

10

-70

-88

10
10

00000000000

N =
S vl

N s N
oo%oo

-60
20
108

-68

10

10

-70

-88

17
17

75

00000000000

N =
w O

N s N
oogoo

-60
23
111

-65

10

10

-70

-88

21
21

00000000000

N =
w O

N s N
oo%oo

-60
23
111

-65

10

10

-70

-88

21
21

00000000000

— =
N O

N s N
oo%oo

-60
12
100

-76

10

10

-70

-88

10
10

00000000000

— =
w N

N s N
oo%oo

-60
13
101

-75

10

10

-70

-88

10
10

00000000000

—
N N

Noo&s N
oogoo

-60
17
105

-71

10

10

-70

-88

13
13
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00000000000

N W
N O

Noo&s N
oogoo

-60
27
115

-61

10

10

-70

-88

&0 00000000000

Noo&s N
oogoo

-60
15
103

-73

10

10

-70

-88

10
10



Fij:

00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
v 00000000000

—_
o]
—_
(@)
—_
vl
o
)
—_
o]
—_
o]
W
=]

ZCj:

finish time:

e2: s[j] <= t+ M1*(1-
x[j]):

e3: s[j] >= t - M1*x[jl:
ed: s[jl +d[jl <=t +

S <o 00000000000
%o 00000000000
3500000000000

o
©CD
o

©

N =
©
NN
o o
NN
o w
NN
o w
N
© N
o

©

o

©

NN
© N
N
© Ul

<
©
1
(9] ]
©
1
U1
©
1
U1
©
1
(9] ]
©
1
92}
©
1
92}
©
1
91}
©
1
(9] ]
©
1
(9] ]
©
1
(9] ]
©

MGy 29 117 29 29 29 29 29 29 29 29 29
e5: slj] + dlj] >=t- 59 29 59 59 59 -59 -59 -59 -59 59 -59
M1*yl[jl:

€9: sj] >= s[il+d[il: 6 30 14 20 23 23 12 13 17 27 15

el1: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dli] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[j]*(t-s[j]) i i i i ) ) ) ] ) ) )
- M2*(L-x[j+yL): 69 69 69 69 -69 69 69 69 69 69 69

e19: z[j] >= c[jl*dl[j] -

94 118 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5 > 5

M2*(1-y[j]):
e20: z[j] >= -M2*x[j]: -88 -88 -8 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1

Period: 30 Obj Value: [mE

Cost ¢j:
duration dj:
start time sj:
schedule time rj:
Gj:

30 10 17 21 21 10 10 13 21 10
10 17 21 21 10 10 13 21 10

_ o O O w
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o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
Fij: o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
ZCj: 18 0 16 15 10 10 12 12 12 30 5
finish time: 6 31 14 20 23 23 12 13 17 27 15

e2: s[j] <= t+ M1*(1-
x[jD):

e3: s[j] >= t - M1*x[j]:
ed: s[jl + d[jl <=t +

[¥;] w
o e o]
y w
91
[ee) ()
[9;] w
[o's) (@)
[¥;] w
[o's) o]
y w
931
(o) ()
N w
o s (@)
[9;] w
o (@)
[9;] w
[o's) o]
h W
o ]
a1 w
[ee) ()
1w
(o) ]

ML (L i) 30 118 30 30 30 30 30 30 30 30 30
e5: s[j] + djl >=t- 58 30 -58 -58 -58 -58 -58 -58 -58 -58 -58
M1*y[jl:

e9: s[j] >= s[il+dli]: 6 31 14 20 23 23 12 13 17 27 15

el1: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[jl >= s[i] + dli] -
M1*(1 - Flil[jD:

el3: s[jl <=r[j] +
M1*(1 - G[jl):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[jI*(t-s[jD) i ) ) i i i i i i )
- M2*(1-x[j+yTjD): 68 -68 68 68 -68 -68 -68 -68 -68 -68 -68

el9: z[j] >= c[jl*dlj] -

94 119 102 108 111 111 100 101 105 115 103

-82 57 -74 -68 -65 -65 -76 -75 -71 -61 -73

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

M2*(1-ylj]):

e20: z[j] >= -M2*x[jl: -88 -88 -88 -88 88 -88 -88 -88 -88 -88 -88

e?: Fil[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
145

Cost cj: 3 4 5 5 5 5 4 3 5 1

duration dj: 6 1 4 2 2 3 4

start time sj: 0 31 10 17 21 21 10 10 13 21 10

schedule time rj: 0 10 17 21 21 10 10 13 21 10

Gj: 1 1 1 1 1 1 1 1 1 1 1
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Fij:

00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
v 00000000000

—_
o]
—_
(@)
—_
vl
o
)
—_
o]
—_
~
—_
N
W
=]

ZCj:

finish time:

e2: s[j] <= t+ M1*(1-
x[j]):

e3: s[j] >= t - M1*x[jl:
ed: s[jl + d[jl <=t +

5 <2 00000000000
3500000000000

w

_ o
w

[a—

w
s
w N
_— O
w N
_ W
w N
— W
w
_ N
w
— W
w

[a—

w N
=N
w
— ul

o
3
1
vl
N
1
vl
N
1
vl
N
1
vl
N
1
(92 ]
N
1
(92 ]
N
1
(92 ]
N
1
vl
~
1
vl
~
1
vl
~

M1y i) 31 119 31 31 31 31 31 31 31 31 31
e5: s[j] + d[jl >=t- 57 31 -57 57 -57 -57 57 57 57 -57 -57
M1*yljl:

e9: s[j] >= s[il+d[il: 6 32 14 20 23 23 12 13 17 27 15

el1: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dli] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

eld: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[jl) i i ) ) ) ) ] ] ) )
- M2*(L-x[jl+yL): 67 67 67 67 -67 67 67 67 67 67 67

e19: z[j] >= c[jl*dl[j] -

94 120 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

M2*(1-ylj):

e20: z[j] >= -M2*x[jl: -88 88 -88 -88 -83 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
Cost ¢j: 3 4 5 5 5 5 3 5 1
duration dj: 6 1 4 3 2 2 2 3 4 6

start time sj: 0 32 10 17 21 21 10 10 13 21 10
schedule time rj: 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 1 1 1 1 1 1 1 1 1
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Fij:

00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000
v 00000000000

—_
o]
—_
(@)
—_
vl
o
)
—_
o]
N
N
W
=]

ZCj:

finish time:

e2: s[j] <= t+ M1*(1-
x[j]):

e3: s[j] >= t - M1*x[jl:
ed: s[jl +d[jl <=t +

<2 00000000000
%o 00000000000
3500000000000

w
N9
w
N
w =
[NCIEEYN
w N
NN O
w N
N W
w N
NN W
w =
NN
w
N
w
N
w N
NN
w =
N vl

<
(@)
1
vl
(@]
'
Ul
(@)
'
Ul
(@)
1
vl
(@]
'
(93]
(@)
'
(93]
(@)
'
(93]
(@)
1
vl
(@)]
1
vl
)}
1
(92 ]
(@)]

MGy 32 120 32 32 32 32 32 32 32 32 32
e5: slj] + dlj] >=t- 56 32 56 -56 -56 -56 -56 -56 -56 -56 -56
M1*yl[jl:

€9: sj] >= s[il+d[il: 6 33 14 20 23 23 12 13 17 27 15

el1: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dli] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[j]*(t-s[j]) i i i i ) ) ) ] ) ) )
- M2*(L-x[j+yL): 66 66 66 66 -66 66 66 66 66 66 66

e19: z[j] >= c[jl*dl[j] -

94 121 102 108 111 111 100 101 105 115 103

10 10 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10

5 5 5 5 5 5 5 5 5 > 5

M2*(1-ylj]):

e20: z[j] >= -M2*x[jl: -88 88 -88 -88 -83 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 1 1 1 1 1 1 1 1 1 1
Cost ¢j: 3 3 4 5 5 5 5 4 3 5 1
duration dj: 13 1 4 3 2 2 2 3 4

start time sj: 0 33 13 17 21 21 13 13 15 21 13
schedule time rj: 0 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 0 0 1 1 0 0 0 1 0
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o o — o o o — — o o -
o o o o o o o o o o o
o o o - o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
Fij: o o o o o o o o o o o
o o o o o o o o — o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
ZCj: 40 0 16 15 10 10 10 12 12 30 5
finish time: 13 34 17 20 23 23 15 16 19 27 18

e2: s[j] <= t+ M1*(1-
x[jl):

e3: s[j] >= t - M1*x[jl: -55
ed: s[jl + d[jl <=t +

w
w
'
[9;] w
(93] w
'
93] w
[3;] w
'
93] w
[3;] w
'
[9;] w
(93] w
'
93] w
[3;] w
'
93] w
[3;] w
'
93] w
[3;] w
'
[9;] w
[9;] w
'
[9;] w
[9;] w
'
[9;] w
[9;] w

M1y i) 33 121 33 33 33 33 33 33 33 33 33
e5: slj] + djl >=t- 55 33 .55 55 -55 .55 55 -55 .55 .55 .55
M1*y[jl:

e9: s[j] >= s[il+dli]: 13 34 17 20 23 23 15 16 19 27 18

el1: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[jl >= s[i] + dli] -
M1*(1 - F[il[j]):

el3: s[j] <=r[j] +
M1*(1 - G[jl):

eld: s[j] >=r[j] - M1*(1
- GIjD):

el8: z[j] >= c[j]*(t-s[j]) i ) i ) ) ) ] ) ] ] ]
- M2 -xj I ): 68 68 68 68 -68 68 68 68 68 68 68

el9: z[j] >= c[j]*dlj] -

13 122 105 108 111 111 103 104 107 115 106

13 54 -71 68 -65 65 -73 -72 -69 -61 -70

78§ -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

5 5 5 S5 5 5 5 5 5 5 5

M2*(1-y[j]):

e20: z[j] >= -M2*x[jl: -88 -88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: Flil[j] + Glj] == 1: 1 0 0 0 0 0 0 0 0 0 0
Cost ¢j: 3 3 4 5 5 5 5 4 3 5 1
duration dj: 14 1 4 3 2 2 2.4 3 4

start time sj: 0 34 14 18 21 21 14 14 16 21 14
schedule time rj: 0 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 0 0 0 1 0 0 0 1 0
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o o o — o o o o o o o
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o o o o o o o o o o o
Fij: o o o o o o o o o o o
o o o o o o o o — o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
ZCj: 4?2 0 16 15 10 10 12 12 12 30 5
finish time: 14 35 18 21 23 23 16 17 20 27 19

e2: s[j] <= t+ M1*(1-
x[j]):

e3: s[j] >= t - M1*x[jl:
ed: s[j] + d[j] <=t +

oL
o P
o P
o P
o P
oL
oL
o P
AN
AN
AN

M1*(1-y[j]): 34 122 34 34 34 34 34 34 34 34 34
e5:s[jl + d[j] >=t - i ) ) ) ) ) ) ) ) )

M1*yljl: 54 34 54 54 54 54 54 54 54 54 54
e9: s[j] >= s[i]+dl[i]: 14 35 18 21 23 23 16 17 20 27 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][j]):

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[j])
- M2*(1-x[jl+yljD):

el9: z[j] >= c[j]*dl[j] -

14 123 106 109 111 111 104 105 108 115 107

14 -53 -70 -67 -65 -65 -72 -71 -68 -61 -69

98 98 98 98 98 98 98 98 98 98 98

-7’8 -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

M2*(1-ylj):

e20: z[j] >= -M2*x[jl: -88 88 -88 -88 -88 -88 -88 -838 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 0 0 0 0 0 0 0 0 0 0
Cost ¢j: 3 3 4 5 5 5 5 4 3 5 1
duration dj: 14 1 4 3 2 2 3.4 3 4 6 5
start time sj: 0 35 14 18 21 21 14 14 17 21 14
schedule time rj: 0 0 10 17 21 21 10 10 13 21 10
Gj: 1 1 0 0 0 0 0 0 0 0 0
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ZCj: 42 0 16 15 10 10 17 12 12 30 5
finish time: 14 36 18 21 23 23 17 17 21 27 19

e2: s[j] <=t + M1*(1-
x[j]):

e3: s[j] >= t - M1*x[jl:
ed: s[j] + d[j] <=t +

oW
w w1
1

92 w
w (9] ]
1

Ul w
w ul
1

Ul w
w ul
1

92 w
w (9] ]
1

Ul w
w ul
1

Ul w
w ul
o w
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1

92 w
w (9] ]
1

92 w
w ()]
1

92 w
w ()]

M1*(-y[j]): 35 123 35 35 35 35 35 35 35 35 35
e5:s[jl +dfjl >=t - i ) ) ) ) ) ) ) ) )

M1*yljl: 53 35 53 53 53 53 53 53 53 53 53
e9: s[j] >= s[i]+dl[il: 14 36 18 21 23 23 17 17 21 27 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][jD:

el2: s[j] >= s[i] + dli] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[jl) ) i ) ) ] ) ) ] ] ]
- M2*(L-x[j -y Lj]): 67 67 67 67 -67 67 67 67 67 67 67

el9: z[j] >= c[j]*dl[j] -

14 124 106 109 111 111 105 105 109 115 107

14 52 -70 -67 -65 -65 -71 -71 -67 -61 -69

98 98 98 98 98 98 98 98 98 98 98

-7’8 -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

5 5 5 5 5 5 5 5 5 5 5

M2*(1-ylj]):

e20: z[j] >= -M2*x[jl: -88 88 -88 -88 -88 -88 -88 -838 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 0 0 0 0 0 0 0 0 0 0
Cost ¢j: 3 3 4 5 5 5 5 4 3 5 1
duration dj: 14 1 4 3 2 2 4.4 3 4

36 14 18 21 21 14 14 18 21 14

10 17 21 21 10 10 13 21 10
1 0 0 1 1 0 0 0 1 0

start time sj:

schedule time rj:
Gj:

_— o O
S
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ZCj: 4?2 0 16 15 10 10 22 12 12 30 5
finish time: 14 37 18 21 23 23 18 17 22 27 19

e2: s[j] <=t + M1*(1-
x[j]):

e3: s[j] >= t - M1*x[jl:
ed: s[jl + d[j] <=t +

1

Ul o
N (@]
oW
N (@)}
a0 w
N (@)}
a0 w
N (@]
W
N (@)}
W
N (@)}
W
N (@)}
a1 w
N (@)}
o w
N (@)}
oW
N (@)}
W
N (@)}

M1*(1-y[j]): 36 124 36 36 36 36 36 36 36 36 36
e5:s[jl + d[j] >=t - i i i i i i i i i i

M1*yljl: 52 36 52 52 52 52 52 52 52 52 52
e9: s[j] >= s[i]+dl[i]: 14 37 18 21 23 23 18 17 22 27 19

ell: s[j] <= s[i] + d[i] +
M1*(1 - F[i][j]):

el2: s[j] >= s[i] + d[i] -
M1*(1 - F[i][jD:

el3: s[j] <=r[j] +
M1*(1 - G[j]):

el4: s[j] >=r[j] - M1*(1
- GljD):

el8: z[j] >= c[jI*(t-s[j]) i ) i i ) i i i i i i
- M2+ -x[j+ylj)): 66 66 66 66 -66 66 66 66 66 66 66

el9: z[j] >= c[j]*dl[j] -

14 125 106 109 111 111 106 105 110 115 107

14 51 -70 -67 65 -65 -70 -71 -66 -61 -69

-7’8 -v8§ -78 -78 -78 -78 -78 -78 -78 -78 -78

M2*(1-y[j]):
e20: z[j] >= -M2*x]j: 88 88 -88 -88 -88 -88 -88 -88 -88 -88 -88
e?: F[il[j] + G[j] == 1: 1 0 0 0 0 0 0 0 0 0 0
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APPENDIX F: SCREEN SHOT AND VBA CODE FOR UPPER BOUND SIMULATION

=] _a A
1 B
2 b
3 | 3
4 t
5 3.
6 | d
i s
8 | i =B7:86 =C7+C6 =D7+D§ ]
9 e =IF(B7-$854,0, F{B3<=5854,(5853B6) ((5854-87) *$853)))  =IF(CT>$B54,0,IF(CB==5B54,(SBSI *CA),(($B54-C7)*5BS3])))  =IF(D7>$B54,0,IF(D8<=5B54,{$8537 D8], (($B54-D7)*5B53))) :
10
1n activity j IR 2 3

] 212
213 finish time Average finish time = =AVERAGE(GT215:GT1218)
214 activity | I 2 3

] 12 ) 0 " AVERAGE(D2020:02219)
1218, start time [} 0 "ZMIN(D2020:D2219)+AVERAGE(D1,D2)
12d activity | [t 2 &

|+] 2020 s o ) 4
2021 s 3
2022, s 4 ¢
2023 s 10 ¢
2024 5 7
2025/ s 7

Option Explicit

Sub RunAll()

Dim precedents(155, 155) As Integer 'two-dimensional array holding all precedents
Dim a As Integer 'act5vity on the node

Dim t As Integer

Dim tTotal As Integer 'time

Dim p As Integer "precedent

Dim s As Integer

Dim tempP As Variant 'temporary holder to compare finish times of precedents
Dim costsActivAtTime(155) As Integer 'array that holds total cost at time t

Dim costsTotalAtTime(155) As Integer

Dim simulation As Double

Dim runs As Double
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Sheets("simulation (ub)").Select
Application.ScreenUpdating = False
runs = Range("D4").Value

Calculate

Range("A1").Select

'establishes an array and stores the precedents array

Fora=0To 97
Forp=0To 97
precedents(a, p) = ActiveCell.Offset(11 + p, 1 + a).Range("Al1").Value
Next p

Next a

a=0

'Clears any old information for results table
Range("B112:B211").Select

Selection.ClearContents

For simulation = 1 To runs
'sets random duration for each activity
Range("B6").Select
ActiveCell.FormulaR1C1 = "=RANDBETWEEN(R[-5]C,R[-4]C)"
Range("B6").Select

Selection.AutoFill Destination:=Range("B6:CU6"), Type:=xIFillDefault
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Selection.Copy

Range("B6").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Application.CutCopyMode = False

'clears any old start times

Range("B7:CU7").Select

Selection.ClearContents

Range("A1").Select

Fora=0To 97
'checks each dominant predecessor for an activity and sets correct predecessor's
finish time
For p=0To 97
tempP = precedents(a, p)
If tempP = 1 Then
'use for road runner start
tempP = ActiveCell.Offset(11 + p, 0).Range("Al").Value
tempP = ActiveCell.Offset(7, tempP).Range("Al1").Value
'use for rail schedule
'tempP = ActiveCell.Offset(6, tempP).Range("A1").Value + ActiveCell.Offset(6,
tempP).Range("Al1").Value'rail
'tempP = ActiveCell.Offset(7, tempP).Range("Al1").Value + 1'delay 1

End If

If tempP > ActiveCell.Offset(6, 1 + a).Range("A1").Value Then

ActiveCell.Offset(6, 1 + a).Range("Al").Value = tempP
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Next p
Next a
'sets correct start time for an activity
Fors=0To 154
Range("B4").Value = s + 1
costsActivAtTime(s) = Range("B5").Value

Next s

For t=0To 154
costsTotalAtTime(t) = ActiveCell.Offset(111 + t, 1).Range("A1").Value

Next t

For tTotal = 0 To 154
If costsActivAtTime(tTotal) > costsTotalAtTime(tTotal) Then
costsTotalAtTime(tTotal) = costsActivAtTime(tTotal)
ActiveCell.Offset(111 + tTotal, 1).Range("Al1").Value = costsTotalAtTime(tTotal)
End If
Next tTotal
Next simulation
Application.ScreenUpdating = True

'Sheets("Ip vs. Sim").Select

End Sub

87

www.manharaa.com




	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. The AoU
	3.1. Mathematical Programming to Determine the AoU
	3.1.1. Notation

	3.2. Upper Bound of the AoU
	3.2.1. Variables
	3.2.2. Objective Function
	3.2.3. Constraints
	3.2.4. Explanation

	3.3. Lower Bound of the AoU
	3.3.3. Explanation

	3.4. Project Generation
	3.5. Calculating the AoU – Solution Times
	3.6. Results

	4. SIMULATION VS. LP
	5. REDUCING THE RISK FROM A CATASTROPHIC EVENT
	5.1. Reducing Risk: Roadrunner Start Times
	5.2. Reducing Risk: Rail Schedule Start Times
	5.3. Effects of Delaying Start Times on Costs of the Network
	5.3.1. Comparison of Costs at Different Completion Time
	5.3.2. Simple NPV Comparison
	5.3.3. NPV Comparison Assuming Probability of a Catastrophic Event

	5.4. Preferred Risk Reduction Strategy

	6. COMPARING UPPER BOUNDS FOR DIFFERENT PROJECTS
	6.1. The NPV of the Sum of Total Costs Method

	7. SUMMARY
	8. AREAS FOR FUTURE RESEARCH
	REFERENCES
	APPENDIX A: CPLEX CODE FOR THE UPPER BOUND
	APPENDIX B: CPLEX CODE FOR THE LOWER BOUND
	APPENDIX C: CONTROL CODE TO RUN ALL T’S IN A NETWORK
	APPENDIX D: CONTROL CODE TO SET NUMBER OF RUNS FOR CPLEX CODE
	APPENDIX E: COMPLETE CODE AND SOLUTION SET FOR 11 NODE PROJECT
	APPENDIX F: SCREEN SHOT AND VBA CODE FOR UPPER BOUND SIMULATION



